Passer au contenu principal
Panneau latéral
Accueil
Plus
Français (fr)
English (en)
Français (fr)
Vous êtes connecté anonymement
Connexion
Accueil
Ouvrir l’index du cours
MICRO-515
20 March 2025
Lecture: Deep & Convolutional Networks, Reinforcement Learning
Lecture: Deep & Convolutional Networks, Reinforcement Learning
Cliquer le lien
4.NeuralNetworks_Deep-Conv-RL.pdf
pour afficher le fichier.
◄ Installation guide
Aller à…
Aller à…
Statistics refresher
News forum
Q&A Forum
Course Introduction
Lecture: Evolutionary Computation
Check points: Evolutionary Computation
Introduction to Practicals
Recording: Course Introduction
Recording: Evolutionary Computation
Lecture: Evolutionary Strategies
Check Points: Evolutionary Strategies
Recording: Evolutionary Strategies
Exercise: GA and ES
Exercise: GA and ES Solutions
Lecture: Multi-objective Evolutionary Optimization
Check points: Multi-objective Evolutionary Optimization
Recording: Multi-objective Evolutionary Optimization
Exercise: NSGA-II
Exercise: NSGA-II Solutions
Articles on Multi-objective optimization: NSGA, NSGA-II, ViE
Lecture: Neural Network Foundations
Check points: Neural Network Foundations
Recording: Neural Network Basics
Recording: Supervised Learning
Installation guide
Check points: Deep & Convolutional Networks, Reinforcement Learning
Recording: Deep & Convolutional Networks, Reinforcement Learning
Article: Learning to Drive with Policy Gradient
Article: How to Train Robots with RL
Lecture: Evolution of Neurocontrollers
Check points: Evolution of Neurocontrollers
Recording: Evolution of Neurocontrollers
Exercises
Lecture: Evolution and Learning
Check points: Evolution and Learning
Recording: Evolution and Learning
Article: Evolution AND Learning
Article: Evolution OF Learning
Article on Evolutionary Strategies versus Reinforcement Learning (PPO)
Check points: Deep & Convolutional Networks, Reinforcement Learning ►
Contact
EPFL CH-1015 Lausanne
+41 21 693 11 11
Suivre les pulsations de l'EPFL sur les réseaux sociaux
Accessibilité
Mentions légales
Protection des données
© 2023 EPFL, tous droits réservés