
Deep & Convolutional Neural Networks

Reinforcement Learning

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by

Dario Floreano and Claudio Mattiussi, MIT Press 1

What you will learn in this class
• Supervised learning (continued from last week)

• Deep learning with autoencoders

• Deep Convolutional Neural Networks

• The Reinforcement Learning Framework

• Reward and Total Return

• The state-action value function (Q function)

• Value Learning

• Deep Q Learning

• Policy Learning

• Policy Gradient Learning

Deep vs. shallow neural networks

Not all connections are shown

Smaller number of weights = better generalization

Compared to a network of k layers, a network of k-1 layers requires exponentially larger number of

weights to achieve same learning error.

In addition, the k-1 layered network is likely to display worse generalization because it will have a

comparatively higher number of weights

3 layers of connections

2 layers of connections

“deep”

“shallow”

Backpropagation in deep networks

However, Backpropagation yields poor results when

applied to networks of many layers (k>3)

The problem lies in poor gradient estimation in the

lower layers of the neural network, leading to smaller

gradients and thus small weight modifications

Not all connections are shown


j
=  A

j() w
ij


i

i


.

“Deep learning”, one layer at a time

Unsupervised training of lower layers to extract increasingly complex features of the input

Supervised training of top layer

pixels edges object parts object models

Specific person

recognition

unsupervised supervised

input output

Hinton, Osindero, Teh, 2006

Bengio, Lamblin, Popovici, Larochelle, 2007

Ranzato, Poultney, Chopra, LeCun, 2007

See online also Learning Deep Architectures for AI by Yoshua Bengio, 2008

Unsupervised learning with Autoencoders

PCA (e.g., Oja’s or Sanger’s networks) are not suitable for deep networks because they are linear

transformation of the input.

Input units

encoding units

output units

h

y

x

t=x

supervised learning

(e.g., BackProp)

Autoencoders are non-linear supervised networks (e.g., Back-prop)

that learn to reproduce the input pattern on the output layer. Usually,

they have smaller set of hidden units (encoding units) which learn a

compressed representation that spans the same space of PCA

representation (but use non-linear units).

Not all connections are shown

Denoising Autoencoders (dropout)

Identity coding problem arises when encoding units are equal or larger than input units

To prevent identity encoding, use denoising autoencoders (Vincent et al. 2008): corrupt input by

randomly switching off 50% of units while keeping teaching output equal to uncorrupted input

original input

corrupted input

encoding units

output units

x’

h

y

x

t=x

supervised learning

(e.g., BackProp)

Not all connections are shown

Target tOutput y

Supervised training of top layer

training

no training

Target tOutput y

Supervised fine tuning of entire network

training

Features represent large data sets in a compact format

What do these images

have in common?

Convolutional Neural Networks
Instead of training weights from all input units to each detector (filter), as autoencoders

do, train only weights from few neighboring input units to each detector and convolve

image to generate activations of the next layer

connection weights

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

Each filter is a feature detector

Filter convolution for 2D images

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot

product

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Feature

Map

Image Convolution block

x

y

x

y

d

x = image coordinate

y = image coordinate

d = convolutions (different filters)

Add non-linearity to each value

in the block, e.g. ReLU function

(Rectified Linear Unit)

5 5 0 0 0 1

0 3 0 7 1 8

0 1 1 2 5 0

1 0 5 0 1 0

0 4 9 0 5 0

3 0 1 0 1 0

5 7

9 5

Reduce layer size by Subsampling

1.6 2.7

2.5 0.7

Max pool

3x3, stride 3

Mean pool

3x3, stride 3

Layer is subdivided into pools (e.g., 3x3 neurons) and the content of each pool

matrix is replaced by a single value, e.g. maximum or mean value of the pool

Typical Convolutional Neural Network

https://en.wikipedia.org/wiki/Convolutional_neural_network
Image by Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

Only weights of one filter per layer are learned to minimize the error (loss) function

robot

dog

pigeon

human

car
…

training

Learning object classification and positions

S. Ren, K. He, R. Girshick and J. Sun (2017), IEEE Transactions on Pattern Analysis and Machine

Intelligence, doi: 10.1109/TPAMI.2016.2577031.

Reinforcement learning

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by

Dario Floreano and Claudio Mattiussi, MIT Press 29

Goal: learn behavior (policy) that maximizes the total future rewards

Input: state (sensory information, position, energy, e.g.), action (forward, rotate, turn, e.g.)

Reward: r (collected dirt, e.g.)

Reinforcement learning framework

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini
30

AGENT ENVIRONMENT

Action at

State st+1

𝑅𝑡 =෍

𝑖=𝑡

∞

𝑟𝑖The agent wants to find a mapping from states to actions (the policy)

that maximizes the total future reward (the Total Return)

Reward rt

can be positive,

negative, or

absent

Reward discount and rollouts

31

𝑅𝑡 =෍

𝑖=𝑡

∞

𝛾𝑖𝑟𝑖

The discount factor  is used to give more importance to present rewards than

to remote future rewards

𝑅𝑡 = 𝛾𝑡𝑟𝑡 + 𝛾𝑡+1𝑟𝑡+1 + 𝛾𝑡+2𝑟𝑡+2⋯+ 𝛾𝑡+𝑛𝑟𝑡+𝑛

0 < 𝛾 < 1

Rollout: the finite number of steps n during which the agent interacts with

the environment until a terminal event or time limit is reached

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

32

The Q Function

𝑅𝑡 = 𝛾𝑡𝑟𝑡 + 𝛾𝑡+1𝑟𝑡+1 + 𝛾𝑡+2𝑟𝑡+2⋯+ 𝛾𝑡+𝑛𝑟𝑡+𝑛

The total return Rt is the discounted sum of all future rewards

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝔼 𝑅𝑡|𝑠𝑡 , 𝑎𝑡

The Q function describes the expected total return that an agent in state s can receive

by performing a certain action a. It can be visualized as a look-up table that the agent

gradually builds by summing up the observed rewards in several rollouts; for example

(fictitious numbers!):

Q values Action A Action B

State A 0 0

State B -2 4

State C -6 0

Rewards Action A Action B

State A 3 -3

State B 1 0

State C 2 0

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

33

Finding the optimal policy

If the agent knows the Q function, the optimal policy consists in finding for each

state s the best action a over all possible actions that maximize the Q function

sa, a?

sb, a?

sc, a?

sd, a?

…

A policy 𝜋 𝑠 is a strategy to select an action a for a state s

The optimal policy 𝜋∗(𝑠) is a policy that maximizes the expected

total return, which is described by the Q function

𝜋∗(𝑠) = argmax
𝑎

)𝑄(𝑠, 𝑎

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

34

A taxonomy of modern RL algorithms (2018)

Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

A model is a function that predicts

state transitions and rewards: it

allows the agent to think ahead and

choose the most appropriate action

(e.g., rules of the

game of chess)

Model-free RL Methods

35

Q-VALUE LEARNING POLICY LEARNING

𝑄 𝑠, 𝑎

𝑎 = argmax
𝑎

)𝑄(𝑠, 𝑎

Find

and pick best action

𝜋 𝑠
Directly find

and sample (try) action

𝑎 ~ 𝜋 𝑠

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

36

Deep Q-Networks (DQN)

Turn left

State s

Action a

𝑄 𝑠, 𝑎

Input OutputAgent

Problem: Q value must be recomputed

for all possible actions at input state s

neural

network

State s

𝑄(𝑠, 𝑎1)

Input OutputAgent

𝑄(𝑠, 𝑎2)

𝑄(𝑠, 𝑎3)

𝑄(𝑠, 𝑎𝑛)

Solution: ask network to compute Q values

for all possible actions of input state s

neural

network

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

DQN assumes a discrete action space

37

DQN learning

State s

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎2)

𝑄(𝑠, 𝑎3)

𝑄(𝑠, 𝑎4)

neural

network

Q-loss = 𝔼 𝑟 + 𝛾max
𝑎′

)𝑄(𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎) 2

Observation Prediction

30

2

4

0

Use back-propagation of error to adapt network weights

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

• Initialize random weights

• Select random action with small

probability , otherwise select

action with highest prediction value

• After termination event, compute Q

loss and perform gradient descent

on weights

38

https://www.youtube.com/watch?v=V1eYniJ0Rnk

DQN learning to play

Atari Breakout game

State = screen image

Paddle actions = left, stay, right

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

39

DQN playing Atari games

V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by

Dario Floreano and Claudio Mattiussi, MIT Press 40
V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

41

Q learning: strengths and limitations

It guarantees the possibility of identifying the optimal policy if the Q function is learned

BUT

It requires a discrete action space (turn left, go forward, stay, etc.)

It only works for deterministic situations (it cannot learn stochastic policies)

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

42

State s

𝑃(𝑎1|𝑠)

Input OutputAgent

neural

network

𝑃(𝑎2|𝑠)

𝑃(𝑎3|𝑠)

𝑃(𝑎4|𝑠)

Policy learning

Directly learn the policy 𝜋 𝑠 : discrete action space

probabilities

0.4

0.3

0.3

0.0

𝜋 𝑠 ~ 𝑃(𝑎|𝑠)

Sample the probability

distribution to select action:

for example, a1

Probability Distribution

Function must sum to 1

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

43

State s

Input OutputAgent

neural

network

Policy learning

Directly learn the policy 𝜋 𝑠 : continuous action space

𝜇 = −0.8

𝜎2 = 0.5
steering angle

0

𝜇

𝑃 𝑎 𝑠 = 𝒩 𝜇, 𝜎2

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

44

Policy Gradient Learning

1. Initialize weights of the agent

2. Run the agent (policy) until termination (rollout)

3. At each time step of the rollout, record the triplet 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡
4. Increase probability of actions that led to high reward

5. Decrease probability of actions that led to low reward

𝑙𝑜𝑠𝑠 = − log𝑃 𝑎𝑡|𝑠𝑡 𝑅𝑡

∆𝑤 = −∇𝑙𝑜𝑠𝑠
∆𝑤 = ∇ log𝑃 𝑎𝑡|𝑠𝑡 𝑅𝑡

The loss function increases the probabilities of

actions with higher total return and decreases

probabilities of actions with lower total return

Weight change is performed after each rollout

x

𝑠1, 𝑎1, 𝑟1

𝑠2, 𝑎2, 𝑟2

𝑠3, 𝑎3, 𝑟3

𝑠4, 𝑎4, 𝑟4

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

An alternative method that does not use gradient ascent is evolutionary computation

For full derivation; https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

A. Amini et al., Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven

Simulation, (2020) IEEE Robotics and Automation Letters, 5(2), 1143-1150

Autonomous driving by Policy Gradient Learning

	Slide 1: Deep & Convolutional Neural Networks Reinforcement Learning
	Slide 2: What you will learn in this class
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

