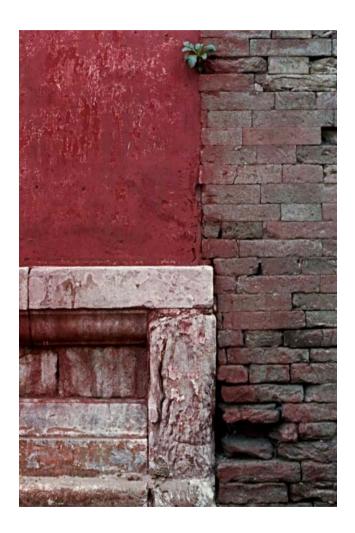
Texture

- What is texture?
- Texture analysis
- Deep Texture



Reminder: Homogeneous or Not?

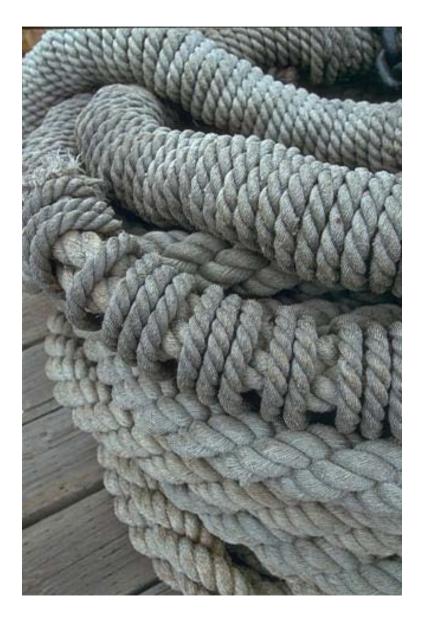
What is homogeneous in some parts of these images are the statistical properties, not the actual pixel values.

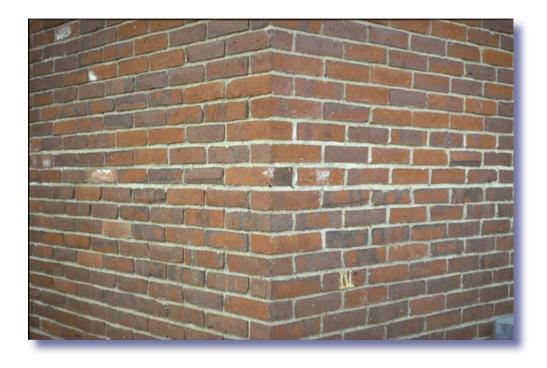
Texture-Based Segmentation

Ideally, we would like to:

- Assign to individual pixels whose texture is similar the same values to form a textural image.
- Evaluate homogeneity both in the original image and in the textural one.

Texture-Based Edges





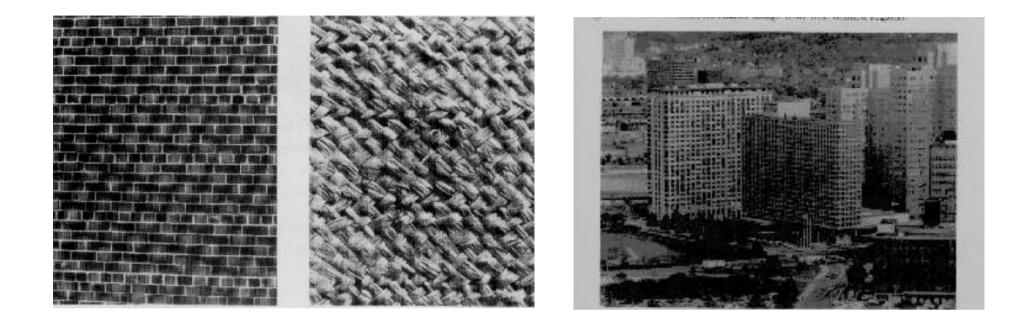
Similarly, we would like to be able to find boundaries between textures.

What is Texture?

Repetition of a basic pattern:

- Structural
- Statistical
- \rightarrow Non local property, subject to distortions.

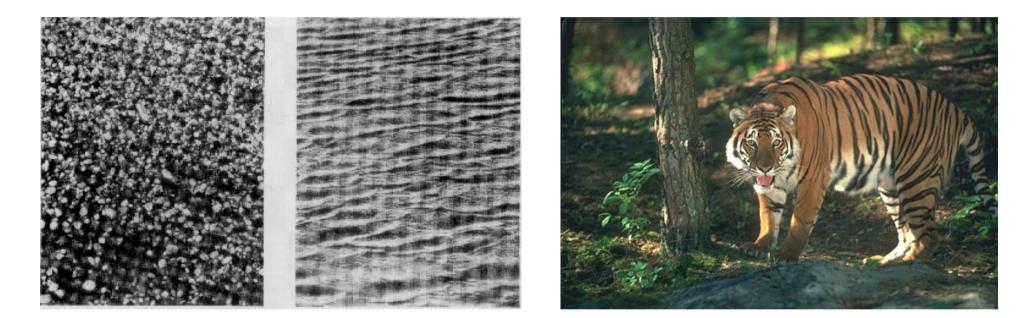
Structural Textures



Repetitive Texture Elements (Texels)

A texel represents the smallest graphical element in a two-dimensional texture that creates the impression of a textured surface.

Statistical Textures



Homogeneous Statistical Properties

Textured vs Smooth

- A "featureless" surface can be regarded as the most elementary spatial texture:
- Microstructures define reflectance properties.
- They may be uniform or smoothly varying.
- \rightarrow Texture is a scale dependent phenomenon

Scale Dependence

At these two different scales, the texture seems very different.

Structural vs Statistical

• Segmenting out texels is difficult or impossible in most real images.

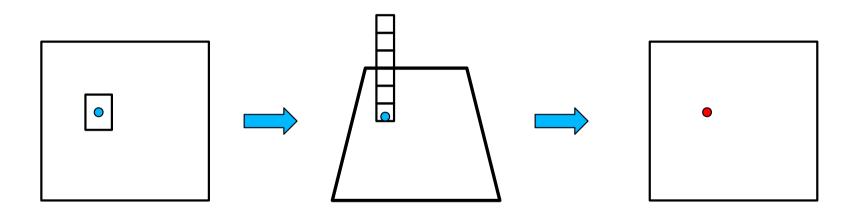
What are the fundamental texture primitives in this image?

• Numeric quantities or statistics that describe a texture can be computed from the gray levels or colors alone.

 \rightarrow The statistical approach is less intuitive, but more effective in practice.

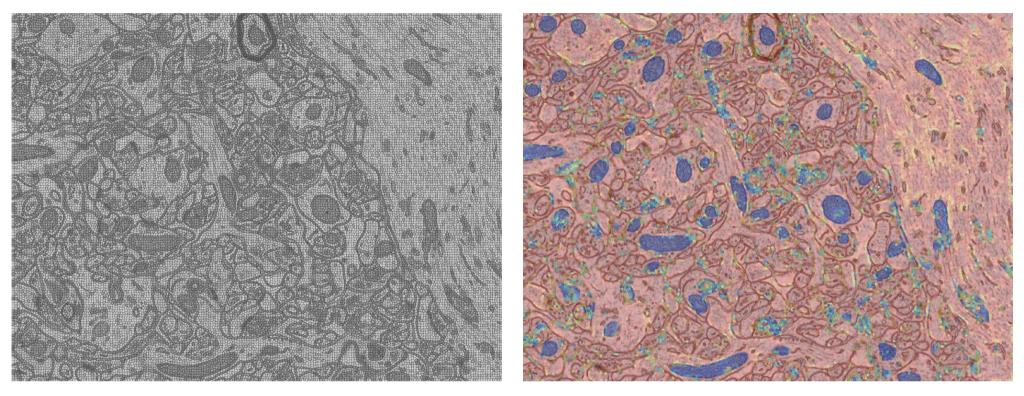
Creating Textural Images

Because texture is non-local, the texture of individual pixels must be estimated using neighborhoods that surround them:



- For each pixel, compute a feature vector using either an image patch or a set of filters.
- Run a classification algorithm to assign a texture value to each pixel.

Reminder: Mitochondria



- Compute image statistics for each superpixel.
- Train a classifier to assign a probability to be within a mitochondria.
- —> We used the super pixels to compute local statistics.

Textural Metrics

Spectral metrics:

• Texture is characterized by the properties of its Fourier transform.

Statistical Metrics:

• Texture is as statistical property of the pixels' intensity and color in a region.

Deep Net Metrics:

- They have now mostly superseded the others.
- They encompass the earlier concepts.

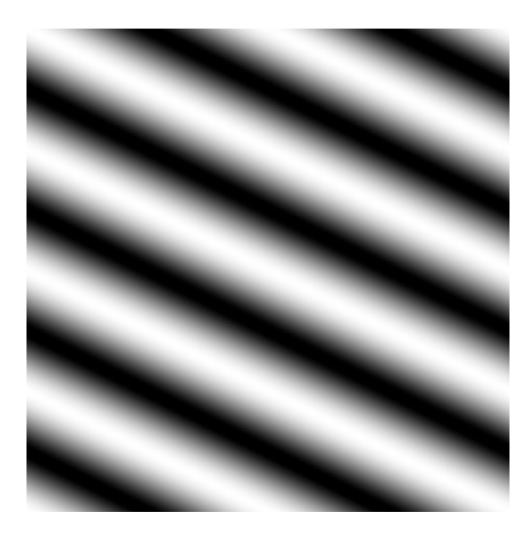
Discrete Fourier Transform

$$F(\mu,\nu) = \frac{1}{\sqrt{M*N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-2i\pi(\mu x/M + \nu y/N)}$$
$$f(x,y) = \frac{1}{\sqrt{M*N}} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} F(\mu,\nu) e^{+2i\pi(\mu x/M + \nu y/N)}$$

The DFT is the discrete equivalent of the 2D Fourier transform:

- The 2D function f is written as a sum of sinusoids.
- The DFT of f convolved with g is the product of their DFTs.

Fourier Basis Element



Real part of

 $e^{+2i\pi(ux+vy)}$

where

- $\sqrt{u^2 + v^2}$ represents the frequency,
- atan(*v*, *u*) represents the orientation.

Fourier Basis Element

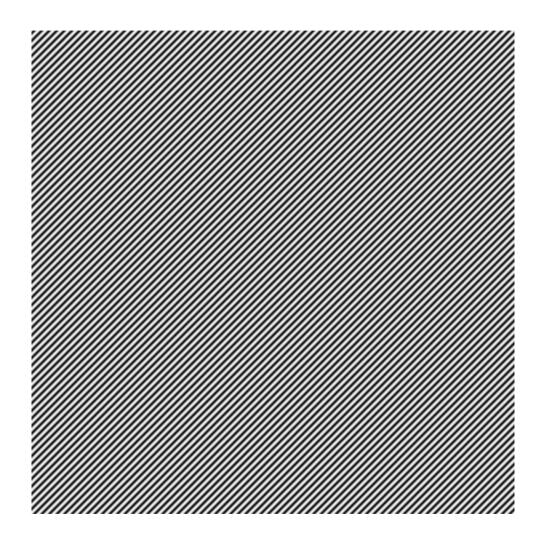
Real part of

$$e^{+2i\pi(ux+vy)}$$

where

• $\sqrt{u^2 + v^2}$ is larger than before.

Fourier Basis Element



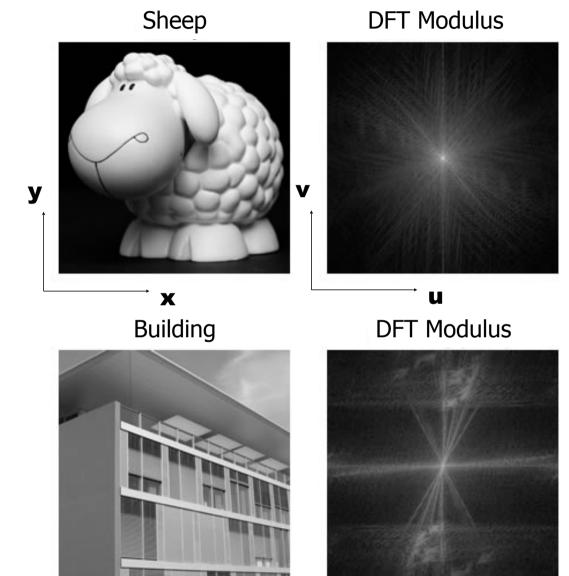
Real part of

$$e^{+2i\pi(ux+vy)}$$

where

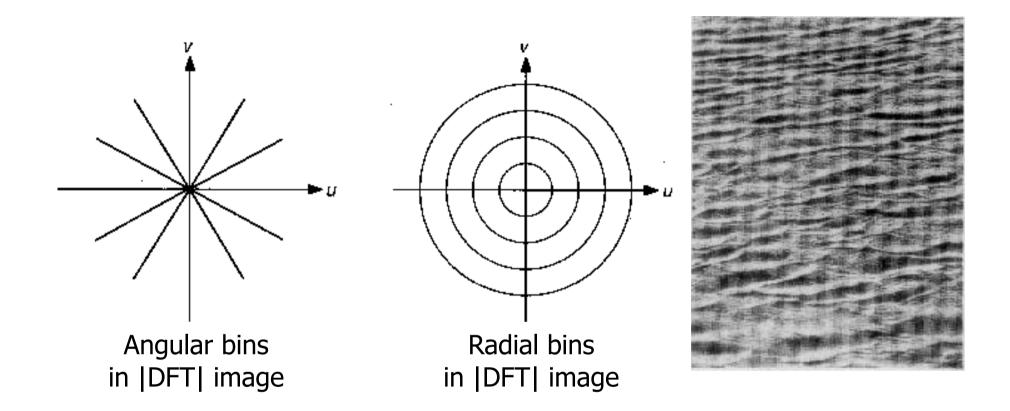
• $\sqrt{u^2 + v^2}$ is larger still.

Spectral Analysis



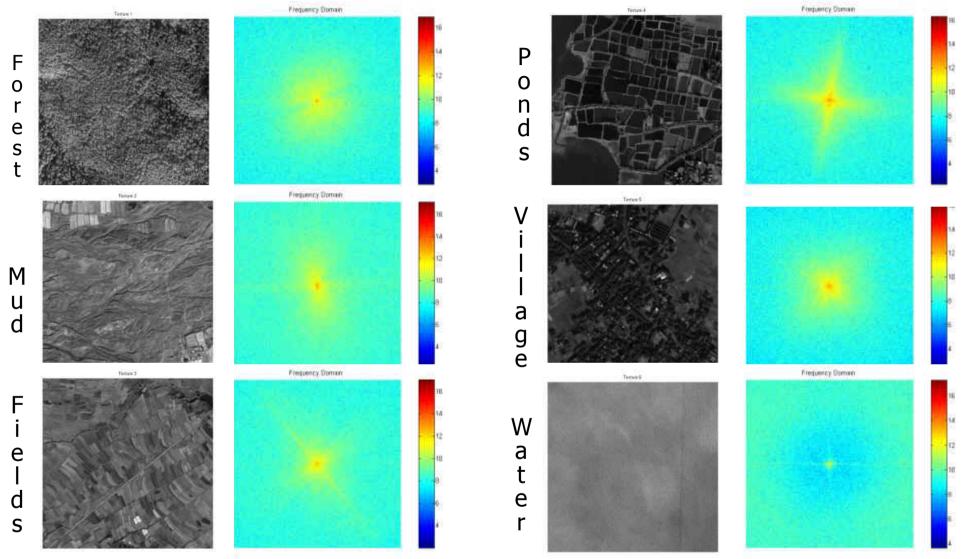
Lines in the DFT modulus images capture the main orientations in the image.

Texture Analysis



Angular and radial bins in the Fourier domain capture the directionality and fluctuation speed of an image texture, respectively.

Fourier Texture Classification



• For some types of textures, the Fourier spectra are easily distinguishable.

20

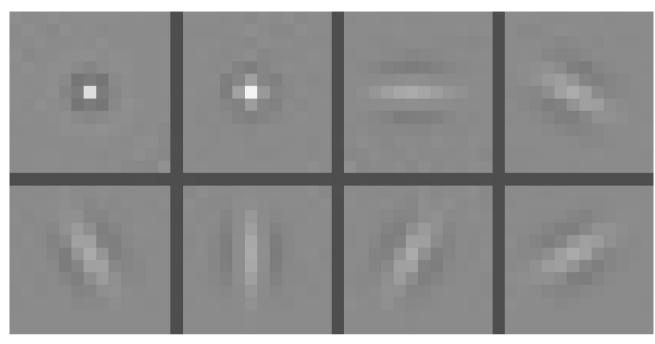
- A classifier can be trained to tell them appart.
- However, one must have the same texture in the whole image patch.
 EPFL

Limitations

- DFT on small patches is subject to severe boundary effects.
- Only applicable if texture is uniform over large areas.
- Results can be improved by using wavelets instead, but only up to a point.

—> More local metrics are required.

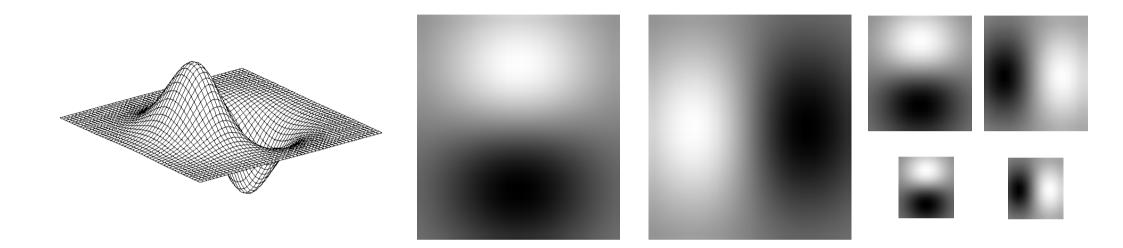
Filter Based Measures



Represent image textures using the responses of a collection of filters.

- An appropriate filter bank will extract useful information such as spots and edges.
- Traditionally one or two spot filters and several oriented bar filters.

Gaussian Filter Derivatives

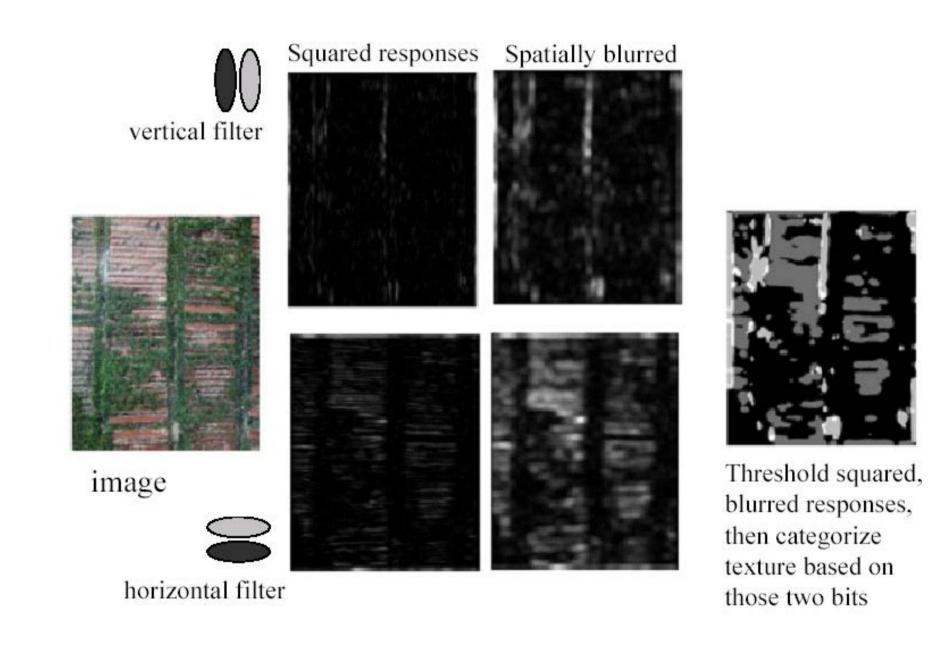


Gaussian Derivative

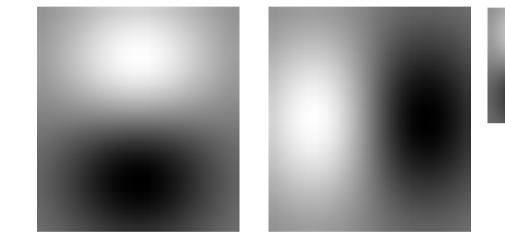
x and y derivatives at different scales

These filters respond to horizontal and vertical edges.

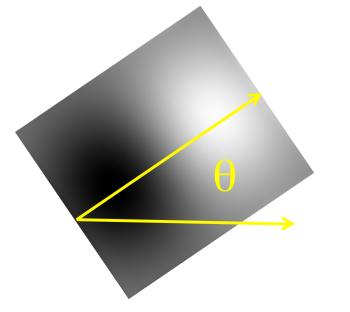
Horizontal and Vertical Structures



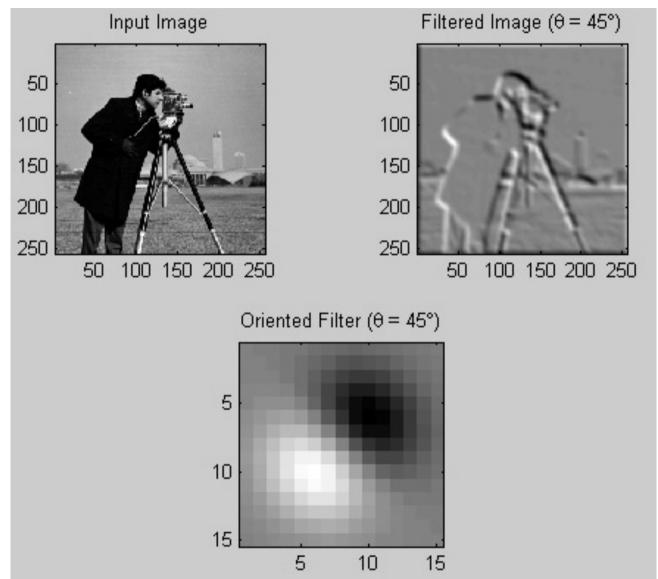
Oriented Filters



$$\frac{\partial I}{\partial \theta} = \cos(\theta) \frac{\partial I}{\partial x} + \sin(\theta) \frac{\partial I}{\partial y}$$

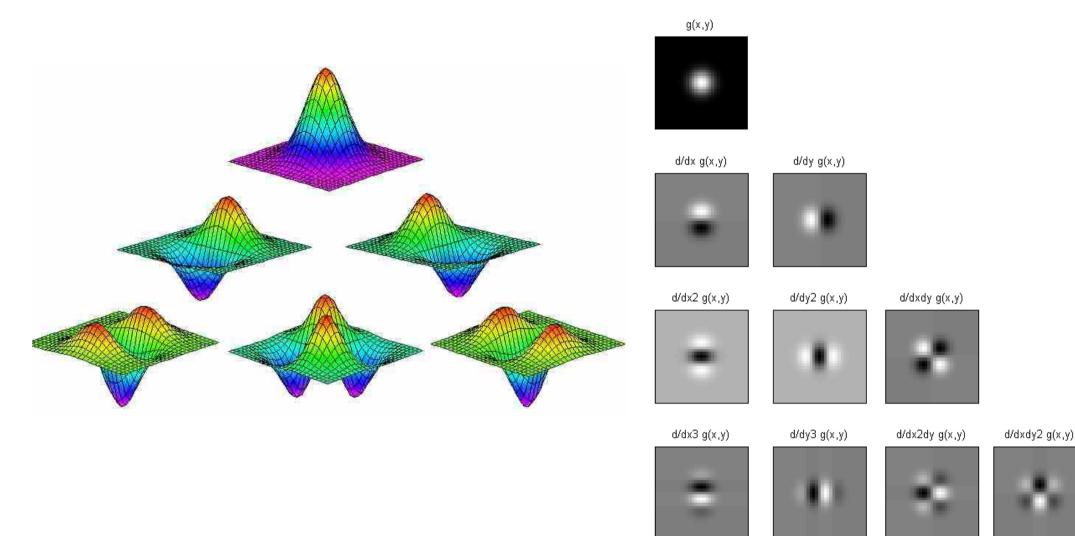


Directional Gradients



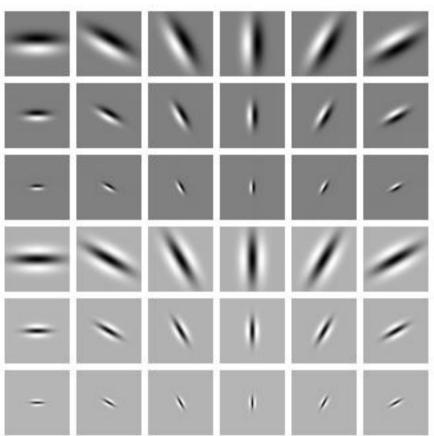
Oriented filters respond to edges in a specific direction.

Higher Order Derivatives



Higher-order derivatives of the Gaussian filters can be used to compute higher-order image derivatives.

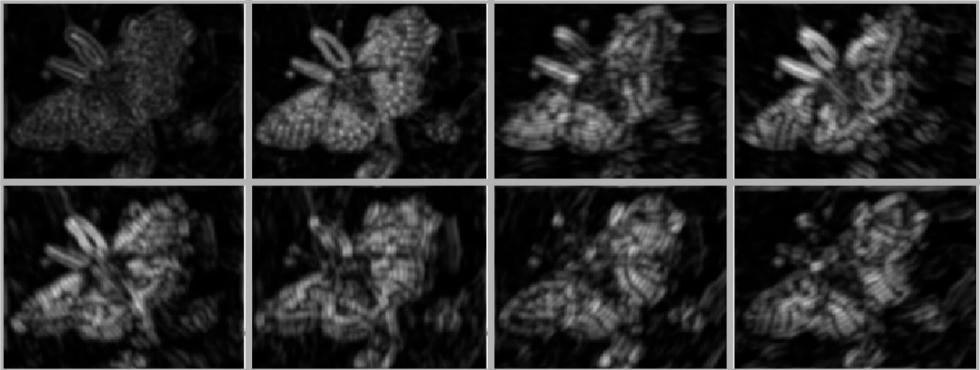
Filter Bank



- Different scales.
- Different orientations.
- Derivatives order 0, 1, 2 ..

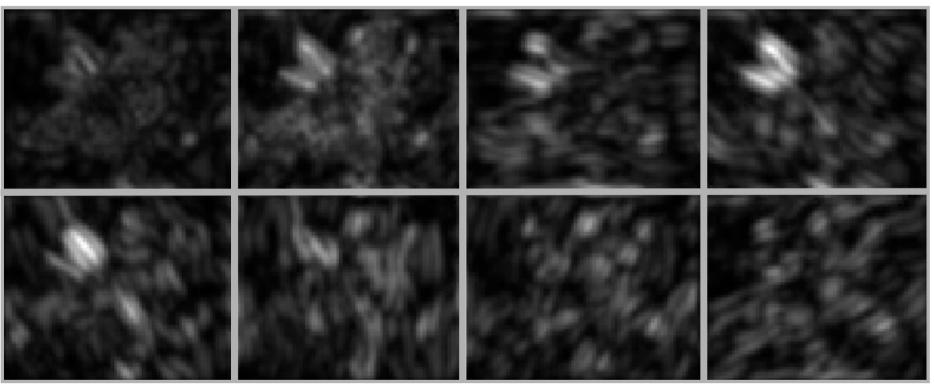
—> For every image pixel, compute a vector of responses to each filter.

Filter Responses: Small Scales



Gaussian filters with a small σ . Capture local details.

Filter Responses: Large Scales



Gaussian filters with a large σ . Capture larger details.

Gabor Filters

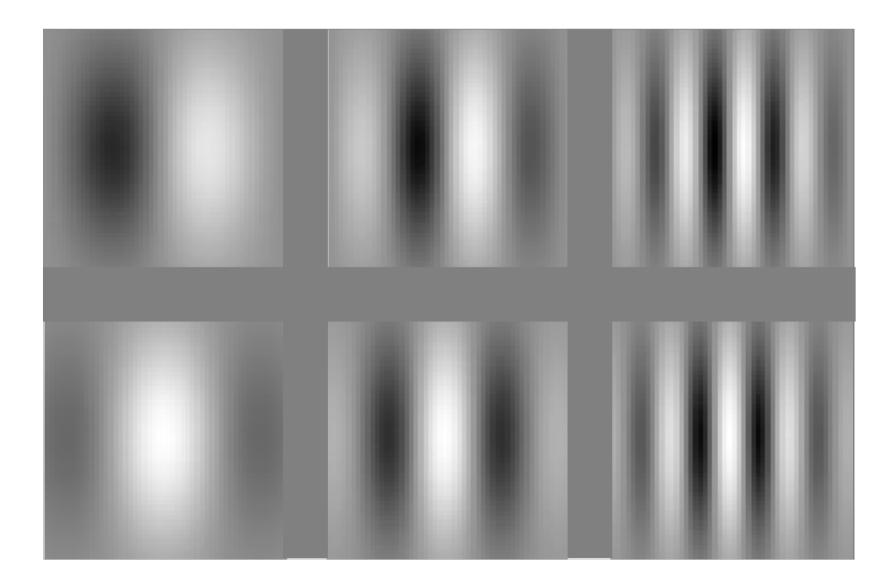
Gabor filters are the products of a Gaussian filter with oriented sinusoids. They come in pairs, each consisting of a symmetric filter and an anti-symmetric filter:

$$G_{\text{sym}}(x,y) = \cos(k_x x + k_y y) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$
$$G_{\text{asym}}(x,y) = \sin(k_x x + k_y y) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

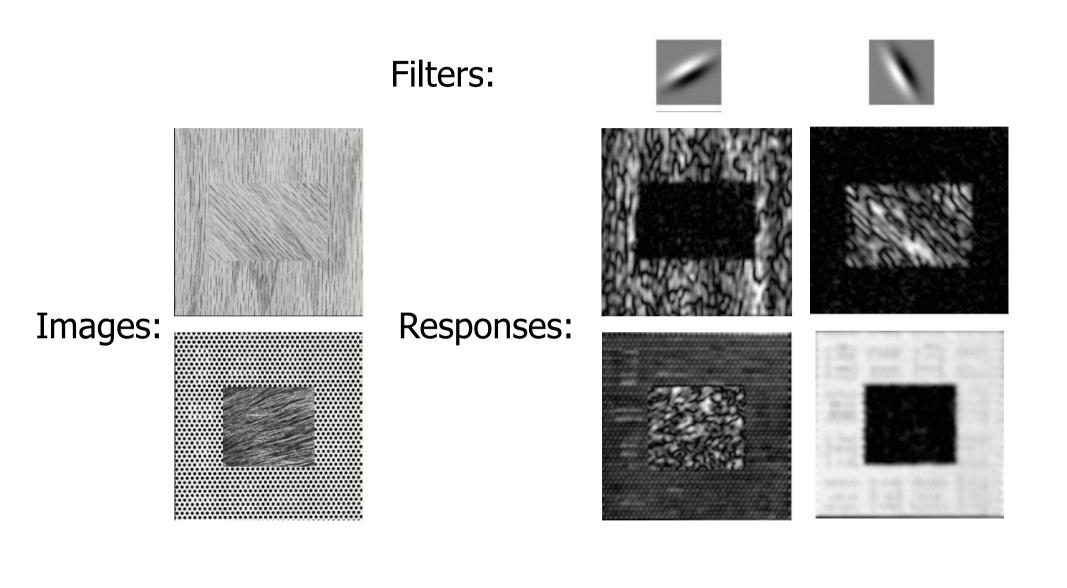
where k_x and k_y determine the spatial frequency and the orientation of the filter and σ determines the scale.

 \rightarrow A filter bank is formed by varying the frequency, the scale, and the filter orientation

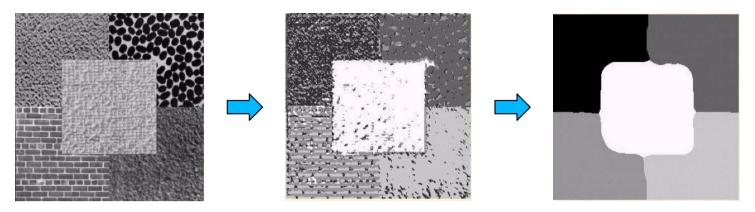
Vertical Derivatives



Gabor Responses

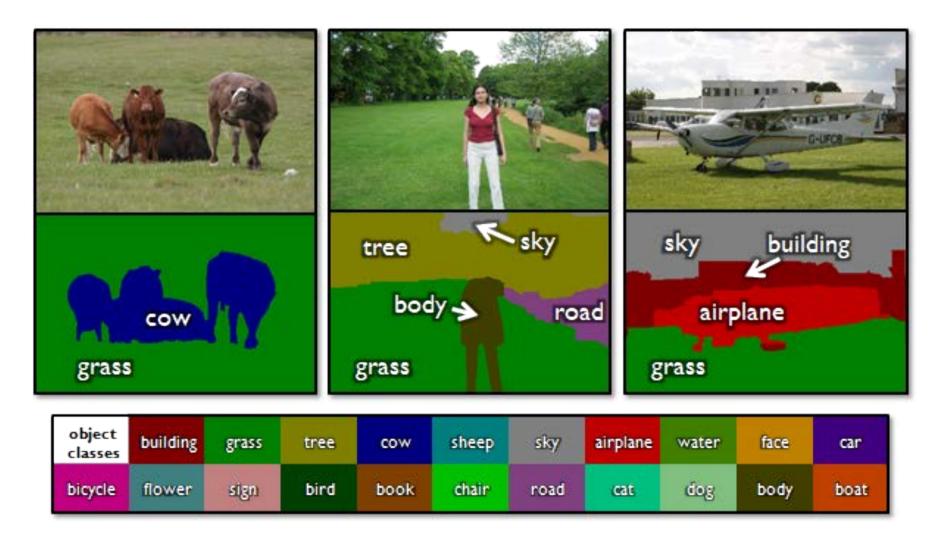


GABOR FILTER CHARACTERISTICS



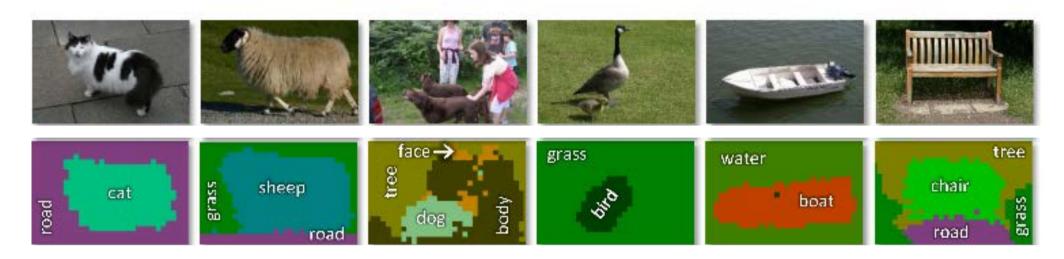
- Respond strongly at points in an image where there are components that locally have a particular spatial frequency and orientation.
- In theory, by applying a very large number of Gabor filters at different scales, orientations and spatial frequencies, one can analyze an image into a detailed local description.
- In practice, it is not known how many filters, at what scale, frequencies, and orientations, to use. This tends to be application dependent.

ML to the Rescue: Texton Boost



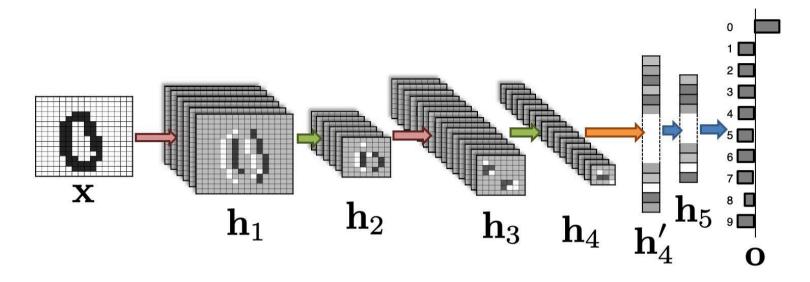
Use AdaBoost to perform classification on the output of Gabor filters.

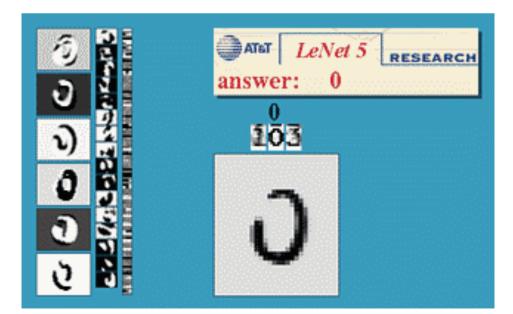
ML to the Rescue: Texton Forests



- Using Decision Forests to perform classification on the output of Gabor filters works better in this case.
- But what works even better, is

Reminder: ConvNets





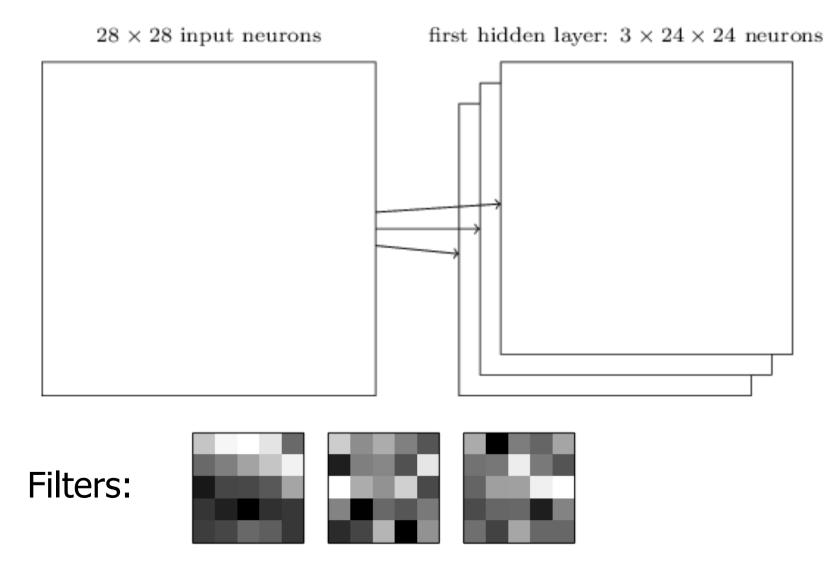
Reminder: Convolutional Layer

input neurons

000000000000000000000000000000000000000	first hidden layer

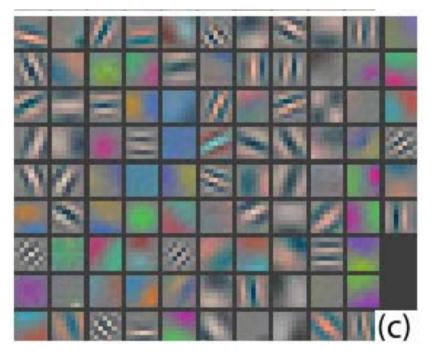
$$\sigma\left(b + \sum_{x=0}^{n_x} \sum_{y=0}^{n_y} w_{x,y} a_{i+x,j+y}\right)$$

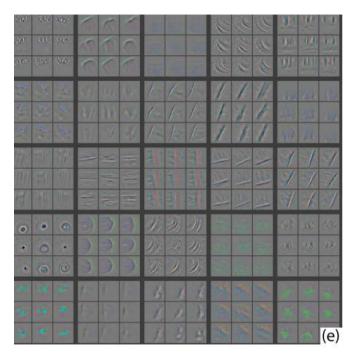
Reminder: Feature Maps



EPFL

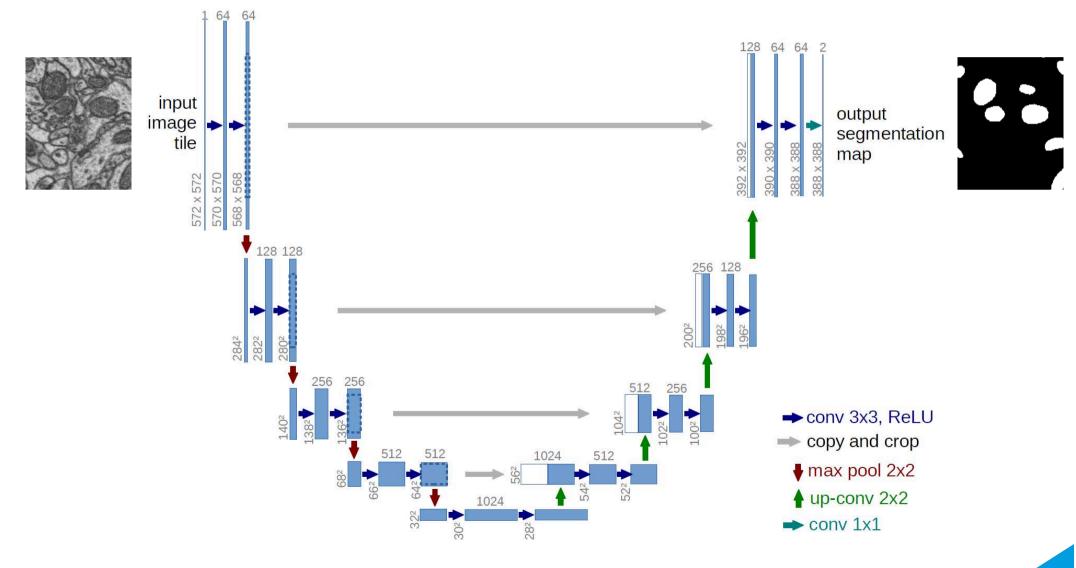
Learned Feature Maps





- Some of these convolutional filters look very Gabor like.
- The network requires a large training set to learn an effective filter bank.
- The older techniques still have their place in the absence of such training sets.

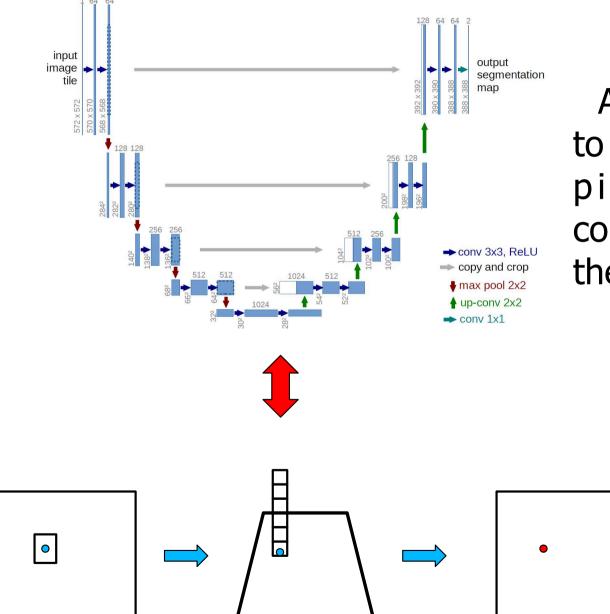
Reminder: U-Net Architecture



EPFL

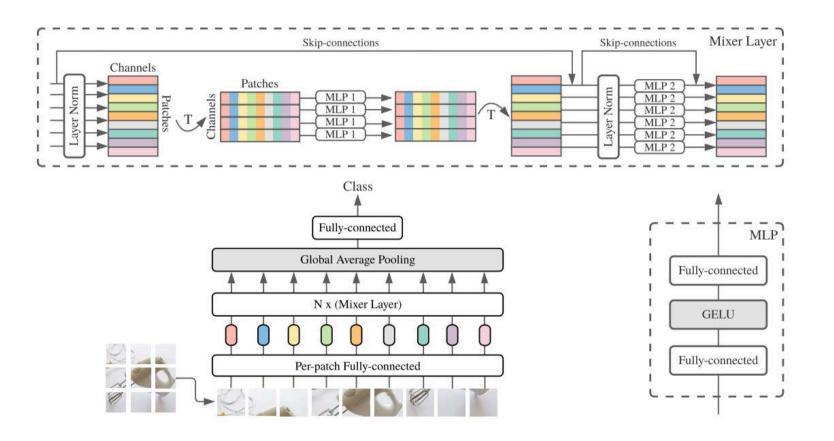
41

Reminder: Potential Interpretation



A key role of the ConvNet is to generate for every output pixel a feature vector containing the output of all the intermediate layers.

Reminder: Vision Transformers



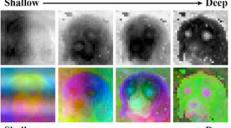
- Break up the images into square patches.
- Transform each path into a feature vector.
- Feed to a transformer architecture.

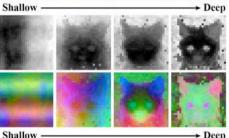
EPFL

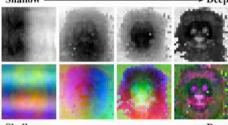
From Interpretation to Practice

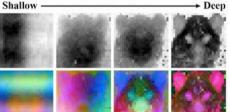
Input image

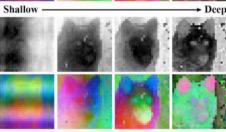
EPFL



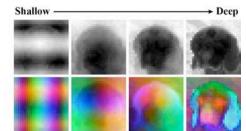


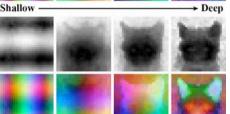


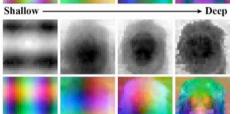


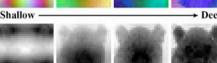


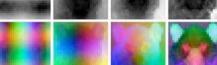
Supervised ViT

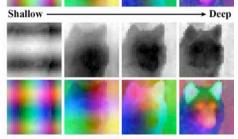






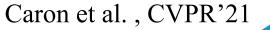




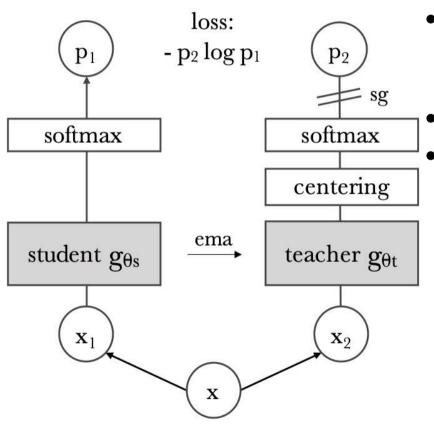


DINO-ViT

- Run a Vision Transformer on all images.
- Display first four PCA components of the feature vectors at each pixel.
- There is clearly enough information to perform a segmentation.
- But how should the network be trained?
 - Supervised. Possible but risk of bias if the training database is not adapted.
 - Self-Supervised. Potentially more generic.

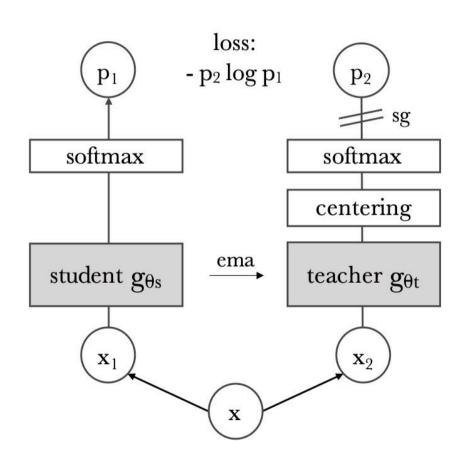


Self-Supervised Training



- Two networks—the student and the teacher—with the same architecture but different parameters are trained to output similar results.
- Each networks outputs a K dimensional feature that is normalized with a softmax over the feature dimension.
- Output similarity measured by a cross-entropy loss.
- To break the symmetry
 - Perturb the input to each network in a random way.
 - The output of the teacher network is centered with a mean computed over the batch.
 - Stop-gradient (sg) operator on the teacher to propagate gradients only through the student.
 - The teacher parameters are updated with an exponential moving average (ema) of the student parameters.

Self-Supervision Code



EPFL

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = qs(x1), qs(x2) # student output n-by-K
    t1, t2 = qt(x1), qt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(qs) # SGD
    gt.params = 1*gt.params + (1-1)*gs.params
    C = m * C + (1-m) * cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

Very simple but works amazingly well!

What Makes it Tick?

• The network—student or teacher—is trained to output the same feature representation given different distorted views of the same image.

26 authors!

Oquab et al., ArXiv'23

• As a result, it learns invariant features.

EPFL

In Short

Texture is a key property of objects that is

- Non local
- Non trivial to measure
- Subject to deformations

→Hard to characterize formally but deep nets can do a good job it.

➡This helps explain the unreasonable effectiveness of deep nets for segmentation.

