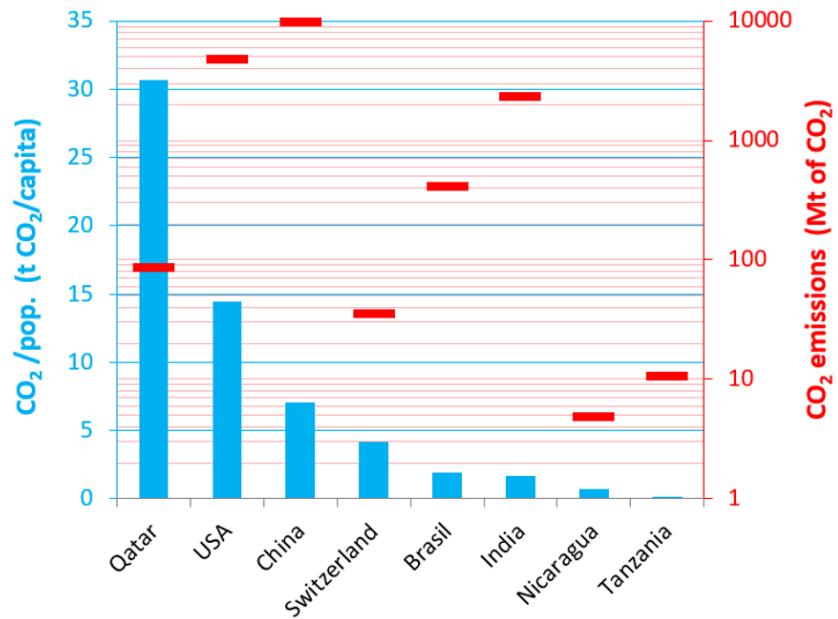
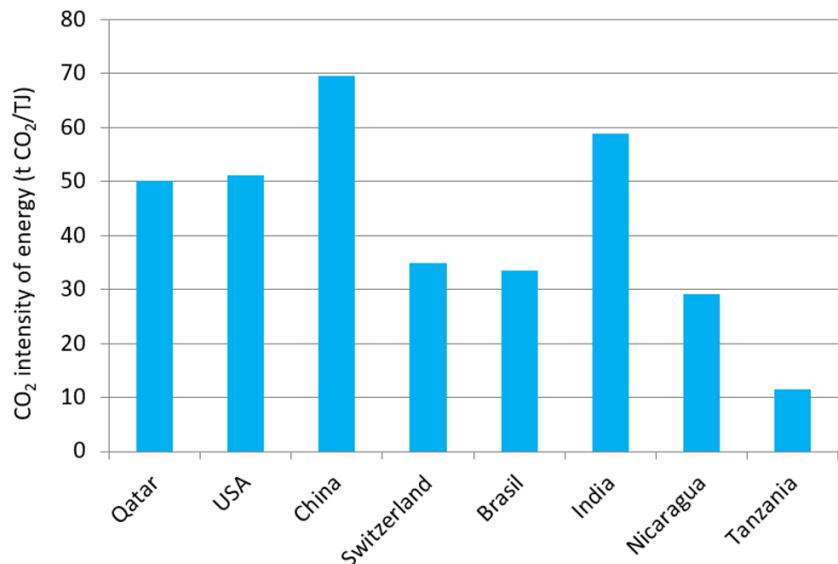


Renewable Energy: Introduction Solution

1. CO₂ emissions


(a) Source: Key World Energy Statistics 2021.pdf
In 2020: 4141 Mt oil (p. 12), 4014 Gm³ natural gas (p. 14), 7575 Mt coal (p. 16)

(b) The chemical composition of oil is given by its empirical formula: C₇H₁₄N_{0.1}O_{0.1}S_{0.3}. Thus, burning 1 mol of oil ($M_{\text{oil}}=110 \text{ g/mol}$) emits 7 mole of CO₂ ($M_{\text{CO}_2} = 44 \text{ g/mol}$). The weight ratio CO₂-to-oil is $(7 \cdot 44)/110 = 2.8$ or in other words, burning 4'141 Mt oil will emit 2.8 times the amount in CO₂: **11.59 Gt CO₂**
Per 1 mol of CH₄ 1 mol of CO₂ is emitted, therefore the molar mass ratio 44/16 = 2.75 multiplied by the amount of gas burnt $4'014 \text{ Gm}^3 \cdot 0.7 \text{ kg/m}^3 = 2'809 \text{ Mt}$ gives the mass of CO₂ emitted: **7.73 Gt CO₂**
With 1 mol of CO₂ emitted from burning 1 mol of C and a carbon content of approx. 50 wt% in coal ($7'575 \text{ Mt coal} \cdot 0.5 = 3'788 \text{ Mt C}$), the molar mass ratio of 44/12 = 3.67 again determines the mass of emitted CO₂ when multiplied with the mass of burnt carbon: **13.89 Gt CO₂**
Total annual emissions from fossil fuels is 33.21 Gt CO₂ (41.8% from coal, 23.3% from oil, 34.9% from gas)
 $33.21 \text{ Gt CO}_2 / 7.82 \text{ billion people} = \mathbf{4.25 \text{ t CO}_2 / person}$


(c) Statistics of CO₂ emission per capita compared to CO₂ emissions for different countries can be found starting from page 60 to 69 of Keyworld World Energy Statistics. These statistics are shown in Figure 1 for different countries.

(d) 418 EJ primary energy consumption per year = **13.25 TW** $\Rightarrow 1.69 \text{ kW per person}$ on the planet on average
CO₂ intensity of energy: $33.21 \text{ Gt CO}_2 / 418 \text{ EJ} \Rightarrow \mathbf{79.45 \text{ t CO}_2/TJ}$

(e) CO₂ emission intensity of countries i) to viii) compare to each other and to the average value of d) in Figure 2.

Figure 1: CO₂ emission per capita and CO₂ emissions for different countries

Figure 2: CO₂ emission intensity of countries i) to viii)

2. Replacement - Biomass

(a) $7'575 \text{ Mt coal} \cdot 20 \text{ MJ/kg} = 151.5 \text{ EJ}$. We need $2 \cdot 151.5 \text{ EJ}$ energy equivalent in wood to replace coal for the electricity production (factor 2 to account for only half the electrical conversion efficiency, 20% instead of 40%) = 303 EJ and therefore $17.8 \cdot 10^{12} \text{ kg}$ of wood.

If we can grow 2 kg per m^2 sustainably, the total amount of $17.8 \cdot 10^{12} \text{ kg}$ grows in $8.91 \cdot 10^{12} \text{ m}^2 = 8.91 \cdot 10^8 \text{ ha forest to replace coal}$.

For replacement of oil: We need $4'141 \text{ Mtoe} \cdot 41.8 \text{ MJ/kg}$ (heating value of typical oil) = 173 EJ; $173 \text{ EJ} / (21 \text{ MJ/L})$ which is $8.26 \cdot 10^{12} \text{ L}$. This requires $1 \text{ ha} / 3'000 \text{ L} \cdot 8.26 \cdot 10^{12} \text{ L} = 2.75 \cdot 10^9 \text{ ha crop land to replace oil}$.

We need $4'014 \text{ Gm}^3$ of natural gas per year. By agro-waste digestion we would need $4'014 \cdot 10^9 \text{ m}^3 / 2000 \text{ (m}^3/\text{ha)} = 5.65 \cdot 10^9 \text{ ha of land to replace gas}$.

(b) The forest surface is $5.61 \cdot 10^7 \text{ km}^2$ and the agricultural area $1.53 \cdot 10^7 \text{ km}^2$. 15.9% of earth's forest area would be needed to replace coal by wood for electricity. 180% of the available agricultural area would be needed to replace oil by bioethanol, and 131% to cover the need of gas by biogas.

(c) The total biomass energy needed is given by 303 EJ for wood (23% of yearly biomass production in forest); 173 EJ for bioethanol and 145 EJ for biogas ($4'014 \cdot 10^9 \text{ m}^3$ converted to EJ using the heating value), a total of 318 EJ Mtoe for bioethanol and biogas (about double of the yearly biomass production in agriculture).

(d) If the increase is entirely covered by forest, it represents 18.45% of the forest to harvest. If the increase is entirely covered by agriculture area, it represents up to 365% of the agriculture area to harvest.

3. Replacement - Solar

(a) The solar irradiance per year is given by $6 \text{ kWh/m}^2 \cdot 365 = 2'190 \text{ kWh/m}^2 = 7.88 \cdot 10^{-9} \text{ EJ/m}^2$. To replace coal-produced electricity, we need $0.4/0.18 \cdot 151.5 \text{ EJ}$ energy equivalent in solar = 336.67 EJ. The area to produce this energy by solar is $336.67 \text{ EJ} / (7.88 \cdot 10^{-9} \text{ EJ/m}^2) = 42'724 \text{ km}^2$.
The area to replace oil by solar fuels is $4'141 \text{ Mtoe} = 173 \text{ EJ} / (7.88 \cdot 10^{-9} \text{ EJ/m}^2 \cdot 0.18 \cdot 0.75) = 162'895 \text{ km}^2$.
The area to replace gas by solar heat is 145 EJ ($4'014 \cdot 10^9 \text{ m}^3$ converted to EJ using the heating value) / $(7.88 \cdot 10^{-9} \text{ EJ/m}^2 \cdot 0.65) = 28'198 \text{ km}^2$.
Total area of 233'796 km² is required.

(b) The area of land and ocean on Earth are respectively $1.48 \cdot 10^8 \text{ km}^2$ and $3.62 \cdot 10^8 \text{ km}^2$. The total PV/absorber area needed to replace all fossil fuels by solar energy represents only 0.16% of land or 0.06% of water area. In other words, this PV/absorber area represents around 6 times the area of Switzerland.

(c) Integrating the solar irradiation from the excel file gives yearly global horizontal solar irradiation of $1'863 \text{ kWh/m}^2 = 6.71 \cdot 10^{-9} \text{ EJ/m}^2$. The area to replace coal-produced electricity is 50'191 km². Similarly, the area to replace oil by solar fuels is 191'460 km² and gas by solar heat 33'143 km². A total PV/absorber area of 274'793 km² is required (around 7 times Switzerland).