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• Thermodynamic basics

– Definitions

– 1st law (energy conservation)

– 2nd law (entropy)

– Exergy

• Review of thermodynamic power cycles

– Rankine, Brayton, combined cycles, engines

• Thermodynamic power cycles relevant for renewable energy applications

• Review of thermodynamic heat pump and refrigeration cycles

Content
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• Understand and apply 1st and 2nd law of thermodynamics, and exergy 

concept to various relevant systems and thermodynamics cycles

• Apply  theory to thermodynamic cycles relevant for renewable energy 

sources

Learning outcomes
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• Current global power production1

Motivation

1 excl. electricity generation from pumped hydro
2 incl. geothermal, solar, wind, heat, etc.
3 incl. peat and oil shales

IEA, World key energy statistics, 2021

Steam cycle

Steam cycle

Combined

steam and gas cycle
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• Energy conversion systems overview

• Traditional and advanced rely on power cycles, traditional turbomachinery: 

heat → mechanical energy → electricity

• Advanced heating applications rely on heat pumping cycles

Motivation
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• Examples:

– Coal plant with 

CO2 capture

– Concentrated solar power

Motivation
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• Examples:

– Nuclear

Motivation

Biomass-fired combined cycle:
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• Examples:

– Enhanced geothermal system

Motivation
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• Energy conservation for open systems:

– Requires mass conservation:

– Energy conservation:

1st law for open systems
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• Energy conservation for open systems, applications:

– Nozzle, diffusor

– Throttling valves

1st law for open systems: Examples

2 2

2 2

i e
i e

w w
h h+ = +

i eh h=
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• Energy conservation for open systems, applications:

– Turbine, compressor, pump, fan

– Heat exchanger

1st law for open systems: Examples

2 2

0
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W m h gz m h gz

   
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   

 

inlets: outlets:

0 i i j j

i j

m h m h= − 

GE, Roots* API 617 OIB 

Voith-Kaplan turbine, 200 MW, diameter 10.5m

GE, LM2500 gas turbine, ships, ca. 30 MW

Brazetek heat exchanger



Haussener – RE | February, 2026 12/66

• Energy efficiency or performance measure can be introduced for single 

components or complete systems

– Always need a proper definition!

– Indicates how well a energy conversion or transfer process is 

accomplished

• General:

Efficiency

desired output
Efficiency=

required input
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• Example - Efficiency of combustion devices:

Efficiency of combustion is the related to the heating value of a fuel, which is 
the amount of heat released when a unit amount of fuel at room temperature is 
completely burned and the combustion products are cooled to room 
temperature.

• Combustion efficiency:

• Heating values (HV):

– High heating values (HHV): 

water is condensed (furnaces etc.)

– Low heating values (LHV): 

water is vapor (cars, jet engines, etc.)

Efficiency

combustion

amount of heat released during combustion

heating value of the fuel burned

             
HV

Q

m

 =

=




Fuel
HHV 

MJ/kg
LHV MJ/kg

Hydrogen 141.80 119.96

Methane 55.50 50.00

Ethane 51.90 47.80

Propane 50.35 46.35

Butane 49.50 45.75

Gasoline 47.30 44.4

Kerosene 46.20 43.00

Diesel 44.80 43.4

Coal 

(Anthracite)
32.50

Coal 

(Lignite)
15.00

Wood 21.7
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• Definitions:

– Process: special types of processes

• Isothermal (T = constant) 

• Isobaric (p = constant) 

• Isochoric (v = constant) 

• Isentropic (s = constant) 

• Adiabatic ( = 0)

– Cycle: Series of processes that return 

system to initial state

E.g. 4-stroke engine 

Processes and Cycles

Q

V
OTP UTP

0 1

2

3

4

5

p

Combustion

Compression

Intake

Expansion

Exhaust

Vc Vh

Valve opens
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• Cycle analysis:

– Power cycles:

– Refrigeration and heat pump cycles:  

Energy for closed systems

cycle cycle0E Q W = = −
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• It is impossible for a system to operate in such 

a way that the sole result would be an energy 

transfer by heat from a cooler to a hotter body.

• It is impossible for any system to operate in a 

thermodynamic cycle and deliver a net amount 

of energy by work to its surrounding while receiving 

energy by heat transfer from a single thermal reservoir.

• It is impossible for any system to operate in a way that entropy is 

destroyed.

2nd law of thermodynamics

2 1

j

j j

Q
S S

T
− = +

>0 irreversibilities

=0 no irreversibilities

<0 impossible
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• General:

• Internally reversible processes:

Entropy balance – closed systems
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• Entropy balance for an open system:

• Simplifications for steady systems or system with only one inlet/outlet

Entropy balance – open systems
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• Isentropic means constant entropy.

• Isentropic processes are processes where the entropy at the initial and final 

state are equal.

• Isentropic processes, e.g.: closed system, reversible and adiabatic process

• Isentropic (turbine) efficiencies: 

Isentropic processes

( )
1 2

t,s

1 2,s
s

/

/
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h hW m
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−
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−

 
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• Carnot cycle:

Famous cycle that undergoes four reversible processes

• Two isothermal processes at two 

different temperature levels

Require heat to be delivered or

rejected

• Two adiabatic processes

• Reverse direction: refrigeration or heat pump cycle

• Efficiency given by Carnot efficiency or COP

Carnot cycle

TH

Tc
1

2

3

4
v

p
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• Maximum efficiencies of power and refrigeration/heat pump cycles:

Carnot efficiency
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Consequences of the 2nd Law

Practical implications from the second law:       
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• What is the potential for use?

Exergy

1st law

No potential 
for use

anergy

Potential 
for use

exergy

2nd law

Energy

various 
forms 

of energy
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• Exergy – definition:

• Specific exergy:

• Exergy difference between two states:

• Specific exergy difference between two states:

Exergy

( ) ( )0 0 0 0 0Ex U U KE PE T S S p V V= − + + − − + −

( ) ( )0 0 0 0 0ex u u ke pe T s s p v v= − + + − − + −

( ) ( )2 1 2 1 2 1 2 1 0 2 1 0 2 1( ) ( ) ( )Ex Ex U U KE KE PE PE T S S p V V− = − + − + − − − + −

( ) ( )2 1 2 1 2 1 2 1 0 2 1 0 2 1( ) ( ) ( )ex ex u u ke ke pe pe T s s p v v− = − + − + − − − + −
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• Open systems – Exergy:

• With flow exergy:

Exergy balance - open systems

0
0 , , 01 j i f i e f e

j i ej

TdEx dV
Q W p m ex m ex T

dt T dt


   
= − − − + − −       
    

Exergy 
destruction due 
to 
irreversibilities

Convective 
exergy transfer 
at the inlets and 
outlest

-

Exergy transfer 
via heat 
transfer -

Change in 
exergy 
within the 
volume

= +

Exergy transfer 
via work
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• Exergy efficiency describes the effectiveness of energy resource utilization

• Components:

– Turbine:

– Compressor/pump:

– Heat exchanger:

(non/mixing)

Exergetic efficiency
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Example thermodynamic power cycles
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• Produce net power output from a energy source, such as fossil fuel, 

nuclear, or solar power

• Three major types of systems:

– Vapor power plants (working fluid alternately vaporizes and 

condenses)

– Gas turbine power plants (working fluid gas, series of components)

– Internal combustion engines (working fluid gas, reciprocating)

Power systems

system

Hot body

Cold body

Qin

Qout

Wcycle
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• Vapor power systems:

– Water is the working fluid, which alternately vaporizes and condenses

– Majority of electrical power generation done by these systems

– Basic components in a simplified systems are:

• Boiler

• Turbine

• Condenser

• Pump

Vapor power systems
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• Idealized Rankine cycle:

– Turbine: isentropic expansion

– Condenser: isobaric heat transfer

– Pump: isentropic compression

– Boiler: isobaric heat transfer

– Efficiency:

Vapor power systems

t 1 2/ ( )W m h h= − 
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 
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• Idealized Rankine cycle: effects of components on performance:

– Increase of average temperature at which energy is added and decrease 

of average temperature at which energy is rejected leads to increased 

efficiency (Carnot):

– Increase in boiler pressure and decrease in condenser pressures:

Vapor power systems

in int,rev out int,rev out
ideal

in int,rev in

( / ) ( / )
1

( / )

Q m Q m T

Q m T


−
= = −

 

 
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• Rankine cycle: improving performance:

– Superheating (using additional heat exchanger, combination of boiler 

and heat exchanger is called steam generator)

Protect turbine (higher x) and increase efficiency (higher T)

Vapor power systems
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• Rankine cycle: improving performance:

– Reheating 

Vapor power systems
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• Rankine cycle: improving 

performance:

– Regeneration via 

open feedwater heater

closed feedwater heater  

Vapor power systems
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Real steam plant example:
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• 2 * 150 MWe

• 8 extractions

• 1 reheater;

for feed-water at HP 

and LP

• 5 turbines

(1 HP, 1 MP, 3 LP)

• 2 cooling towers

εTurbogroup = 75%

εBoiler = 52%

εPlant = εTG·εBoiler= 39%

Real steam plant example:

= still the main exergy loss (large T drop) → 1st law : 94%



Haussener – RE | February, 2026 37/66

• Power and heat:

– steam extraction to HEX for district heating (70°C)

– output service: power E- and transformation YD
-

Co-generation

The more steam is extracted for district heating,

the less power is available in the turbine
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• Spark ignition or compression ignition

• Air-standard analysis:

– Fixed amount of air modeled 

as ideal gas

– Combustion modeled by heat  

transfer from external source

– No exhaust and intake strokes. 

Constant volume heat rejection 

– Internally reversible processes

Internal combustion engines

V
OTP UTP

0 1

2

3

4

5

p

Combustion

Compression

Intake

Expansion

Exhaust

Vc Vh

Valve opens
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• Air-standard Otto cycle:

– 1-2: Isentropic compression

– 2-3: Constant-volume heat transfer

– 3-4: Isentropic expansion

– 4-1: Constant-volume heat

– Cycle efficiency: 

Internal combustion engines
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• Air-standard Diesel cycle:

– 1-2: Isentropic compression 

– 2-3: Constant-pressure heat transfer 

– 3-4: Isentropic expansion 

– 4-1: Constant-volume heat rejection

– Cycle efficiency: 

Internal combustion engines
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• Gas turbine systems:

• Air-standard Brayton cycle (ideal):

– 1-2: Isentropic compression

– 2-3: Isobaric heat transfer

– 3-4: Isentropic expansion

– 4-1: Isobaric heat transfer

Gas turbine power plants
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• Air-standard Brayton cycle: pressure ratio effect on performance

– Efficiency increases with 

increasing pressure ratio

– Regeneration:

– Reheating and intercooling:

Gas turbine power plants

k=1.4
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• Ericsson and Stirling cycle (both with same features as Carnot):

– In the limit of large

number of multi-stage

compression with inter-

cooling, and multi-stage

expansion with re-heating,

with ideal regeneration

– Cycle with regeneration,

internally reversible, 

internal heat transfer 

Processes → Stirling cycle

Internal combustion engines

Ericsson cycle

C
th

H

1
T

T
= −
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• Gas cycle + steam cycle

• Fuels: oil, natural gas, gasified coal fuels

• GT on top of ST (‘topping cycle’) reduces the exergy heat transfer loss 

between fuel combustion gases and steam

• ST below the GT (‘bottoming cycle’) reduces transformation exergy loss

of the hot GT exhaust gas (450-650°C)

→ ‘win’ –’win’ combination between both cycles

→ The individual cycles in a CC configuration find themselves simplified

with respect to their stand-alone configurations:

– for the GT: obviously no regenerator ! (it becomes the steam heater)

– for the ST: almost no steam extraction

Combined cycle (CC)
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Combined gas-steam cycle in T-s diagram

H2Oair combustion gas 

T

s

gas turbine cycle

(Brayton)

steam cycle

(Rankine)

1g

2g

3g

4g

5g

1v

2v

3v

4v
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(no cogen.)

Layout
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Efficiency evolution and perspectives

(T. Kaiser, Alstom)
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Thermodynamic power cycles for renewable sources
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Steam P-T diagram for various cycle applications

T(°C)

P
(bar)

(source: Rickli)
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• Traditional Rankine cycle:

Concentrated Solar Power - Centralized

→ see lecture solar

Heliostat field
Cold storage tank
Tower with receiver
Hot storage tank
Steam generator
Turbine
Electric generator
Electrical transformer



Haussener – RE | February, 2026 51/66

• Stirling cycle:

Concentrated Solar Power - Decentralized

→ see lecture solar
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• For geothermal, waste heat, non / low-concentrated solar:

– Temperatures too low for HTF water

– Instead using fluid with different critical parameters 

Low temperature sources
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• Choice depends on:

– Flammability and toxicity 

depending on security of the site

– ODP and GWP for the 

environment

– Stability 

– Authorization for the fluid

HTF for ORC

M. Kane
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• Biomass: Working fluid silicone oil

ORC example

M. Kane



Haussener – RE | February, 2026 55/66

• Geothermal

ORC example

M. Kane
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Example thermodynamic cooling and heating cycles
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• Refrigeration and heat pump

– Maintain cold temperature below

temperature of surrounding

– Maintain high temperature above

temperature of surrounding

Refrigeration and heat pump systems

system

Hot body

Cold body

Qout

Qin

Wcycle
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• Practical refrigeration/heat pump cycle, ideal: 

– 1-2: Isentropic compression

– 2-3: Isobaric heat rejection

– 3-4: throttling process

– 4-1: Isobaric heat addition

– Coefficient of performance:

Vapor-compression refrigeration system
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• Gas refrigeration systems, Brayton refrigeration cycle

– 1-2: (Isentropic) compression 

– 2-3: Isobaric cooling 

– 3-4: (Isentropic) expansion 

– 4-1: Isobaric evaporation

– Coefficient of performance:

Gas refrigeration systems
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• Heat pump system:

– Common application: space heating

– Vapor-compression as well as absorption heat pumps

Heat pump systems

Air-source heat pump
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• Carnot heat pump cycle:

– Same processes

– Different purpose

– Performance:

Heat pump systems
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• Vapor-compression heat pumps:

Heat pump systems
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• Vapor-compression heat pumps:

– 1-2:

– 2-3: 

– 3-4: 

– 4-1:  

– Performance:

Heat pump systems
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• Idea: achieve the pressure raise from low (BP) → high (HP) not by a 

compressor, but by the desorption (using a heat source) of a working fluid 

from its solvent, in which this working fluid had previously been absorbed 

(rejecting heat during absorption)

– e.g. working fluid NH3 with water as solvent

– e.g. working fluid water with LiBr as solvent

Absorption heat pump

Often low temperature (~100°C), 

ideal for many renewables
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• absorber (water): 

receives low p NH3 vapor (BP)

 liberates absorption heat (H)

• liquid pump BP→HP

• boiler: delivers the absorption 

heat (G) to desorb the NH3

vapor → HP

• expander (liq.) HP→BP

• internal heat exchanger 

between the ‘rich’ and ‘poor’ 

solutions (in NH3)

• tubing

Absorption heat pump

   

˙ E P
+

replaces a compressor

TRITHERMAL CYCLE  1, 2, 3

3

2

1
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• Introduction into thermodynamics:

– 1st law for closed and open systems

– 2nd law for closed and open systems, entropy definition

– Exergy

– State functions

• Exemplary thermodynamic power systems:

– Power systems:

• Vapor power systems

• Gaspower systems:

– Internal combustion engines

– Gas turbine power plants

• Examples of relevant power cycles for renewable sources

• Exemplary thermodynamic cooling and heating systems:

– Refrigeration and heat pump systems

Learning outcomes
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