
Exercise Set 1
Quantum Computation

Exercise 1 *Dirac's notation for vectors and matrices*

Let $\mathcal{H} = \mathbb{C}^N$ be a vector space of N dimensional vectors with complex components. Let

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix}$$

be a column vector. We define its “conjugate” as

$$\vec{v}^\dagger = (\bar{v}_1, \dots, \bar{v}_N)$$

where \bar{z} stands for the complex conjugate of $z \in \mathbb{C}$. So \vec{v}^\dagger is obtained by transposition and complex conjugation (if the components are real this reduces to the usual transposed vector). The inner or scalar product is by definition

$$\vec{v}^\dagger \cdot \vec{w} = \bar{v}_1 w_1 + \dots + \bar{v}_N w_N$$

and the norm is

$$\|\vec{v}\|^2 = \vec{v}^\dagger \cdot \vec{v} = \bar{v}_1 v_1 + \dots + \bar{v}_N v_N = |v_1|^2 + \dots + |v_N|^2$$

In Dirac's notation we write $\vec{v} = |v\rangle$ and $\vec{v}^\dagger = \langle v|$. Therefore the inner product becomes

$$\langle v|w\rangle = \bar{v}_1 w_1 + \dots + \bar{v}_N w_N$$

The canonical orthonormal basis vectors are by definition

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \vec{e}_N = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

In Dirac's notation the orthonormality of the basis vectors is expressed as

$$\langle e_i | e_j \rangle = \delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j. \end{cases}$$

The expansion of a vector on this basis is

$$|v\rangle = v_1 |e_1\rangle + v_2 |e_2\rangle + \dots + v_N |e_N\rangle$$

Now you will check a few easy facts of linear algebra and translate them in Dirac's notation.

(a) Check from the definitions above that if $|v\rangle = \alpha|v'\rangle + \beta|v''\rangle$ then

$$\langle v| = \overline{\alpha} \langle v'| + \overline{\beta} \langle v''|.$$

(b) In particular deduce that if $|v\rangle = v_1|e_1\rangle + v_2|e_2\rangle + \dots + v_N|e_N\rangle$ then

$$\langle v| = \overline{v}_1 \langle e_1| + \overline{v}_2 \langle e_2| + \dots + \overline{v}_N \langle e_N|.$$

(c) Show directly in Dirac notation that

$$\langle v|w\rangle = \overline{v}_1 w_1 + \dots + \overline{v}_N w_N.$$

(d) Deduce that $\sqrt{\langle v|v\rangle} = \|v\|$.

(e) Consider the ket-bra expression $|e_i\rangle \langle e_j|$ for canonical basis vectors. Write this as an $N \times N$ matrix.

(f) Consider now an $N \times N$ matrix A with complex matrix elements a_{ij} ; $i = 1 \dots N$; $j = 1 \dots N$. Deduce from the above question that

$$A = \sum_{i,j=1}^N a_{ij} |e_i\rangle \langle e_j|$$

and also that

$$a_{ij} = \langle e_i| A |e_j\rangle.$$

(g) In particular verify that the identity matrix satisfies :

$$I = \sum_{i=1}^N |e_i\rangle \langle e_i|.$$

This is called the closure relation. Deduce that in fact this relation is valid for any orthonormal basis of vectors $|\varphi_i\rangle$, $i = 1, \dots, N$.

(h) (Spectral theorem) Let $A = A^\dagger$. This is called a *Hermitian matrix*. An important theorem of linear algebra states that : “any Hermitian matrix has N orthonormal eigenvectors”. Let $|\varphi_i\rangle, \alpha_i$, $i = 1, \dots, N$ be the eigenvectors and eigenvalues of A , *i.e.*,

$$A|\varphi_i\rangle = \alpha_i|\varphi_i\rangle.$$

Prove directly in Dirac's notation that

$$A = \sum_{i=1}^N \alpha_i |\varphi_i\rangle \langle \varphi_i|.$$

This “expansion” is often called the spectral expansion (or theorem).

Exercise 2 Matrices in Hilbert Spaces

Let $\mathcal{H} = \mathbb{C}^N$ be a Hilbert space.

- (a) Let H be a Hermitian matrix on \mathcal{H} , meaning $H^\dagger = H$. Show that all the eigenvalues of H are real.
- (b) Let U be a unitary matrix on \mathcal{H} , meaning that U is invertible and $U^\dagger = U^{-1}$. Show that all the eigenvalues λ of U lie in the unit circle, i.e. $|\lambda| = 1$.
- (c) Let P be a projection, meaning $P^2 = P$. Show that the eigenvalues of P are either 0 or 1.
- (d) Let A be a positive-semidefinite matrix, meaning that for all $|v\rangle \in \mathcal{H}$,

$$\langle v| A |v\rangle \geq 0. \quad (1)$$

Show that the eigenvalues of A are non-negative.

Exercise 3 Tensor Product in Dirac's notation

Let $\mathcal{H}_1 = \mathbb{C}^N$ and $\mathcal{H}_2 = \mathbb{C}^M$ be N and M dimensional Hilbert spaces. The tensor product space $\mathcal{H}_1 \otimes \mathcal{H}_2$ is a new Hilbert space formed by “pairs of vectors” denoted as $|v\rangle_1 \otimes |w\rangle_2 \equiv |v, w\rangle$ with the properties :

- $(\alpha |v\rangle_1 + \beta |v'\rangle_1) \otimes |w\rangle_2 = \alpha |v\rangle_1 \otimes |w\rangle_2 + \beta |v'\rangle_1 \otimes |w\rangle_2$,
- $|v\rangle_1 \otimes (\alpha |w\rangle_2 + \beta |w'\rangle_2) = \alpha |v\rangle_1 \otimes |w\rangle_2 + \beta |v\rangle_1 \otimes |w'\rangle_2$,
- $(|v\rangle_1 \otimes |w\rangle_2)^\dagger = \langle v|_1 \otimes \langle w|_2$,
- $\langle v, w|v', w'\rangle = \langle v|v'\rangle_1 \langle w|w'\rangle_2$.

- (a) Show that for any two vectors of \mathcal{H}_1 and \mathcal{H}_2 expanded on two basis, $|v\rangle_1 = \sum_{i=1}^N v_i |e_i\rangle_1$ and $|w\rangle_2 = \sum_{j=1}^M w_j |f_j\rangle_2$, then

$$|v\rangle_1 \otimes |w\rangle_2 = \sum_{i=1}^N \sum_{j=1}^M v_i w_j |e_i\rangle_1 \otimes |f_j\rangle_2.$$

- (b) Show that if $\{|e_i\rangle_1; i = 1 \dots N\}$ and $\{|f_j\rangle_2; j = 1 \dots M\}$ are orthonormal, then $|e_i\rangle_1 \otimes |f_j\rangle_2 \equiv |e_i, f_j\rangle$ is an orthonormal basis of $\mathcal{H}_1 \otimes \mathcal{H}_2$. What is the dimension of $\mathcal{H}_1 \otimes \mathcal{H}_2$?
- (c) Any vector $|\Psi\rangle$ of $\mathcal{H}_1 \otimes \mathcal{H}_2$ can be expanded on the basis $|e_i\rangle_1 \otimes |f_j\rangle_2 \equiv |e_i, f_j\rangle, i = 1 \dots N, j = 1 \dots M$,

$$|\Psi\rangle = \sum_{i=1, j=1}^{N, M} \psi_{ij} |e_i, f_j\rangle.$$

If A is a matrix acting on \mathcal{H}_1 and B is a matrix acting on \mathcal{H}_2 , the tensor product $A \otimes B$ is defined as

$$A \otimes B |\Psi\rangle = \sum_{i, j} \psi_{ij} A |e_i\rangle_1 \otimes B |f_j\rangle_2.$$

Check that the matrix elements of $A \otimes B$ in the basis $|e_i, f_j\rangle$ are :

$$\langle e_i, f_j | A \otimes B | e_k, f_l \rangle = a_{ik} b_{jl}.$$

(d) Let $\mathcal{H}_1 = \mathbb{C}^2$, $\mathcal{H}_2 = \mathbb{C}^2$. Take $A_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B_2 = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$, $|v\rangle_1 = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, $|w\rangle_2 = \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$.
 From the defining properties of the tensor product deduce the the following formulas :

$$|v\rangle_1 \otimes |w\rangle_2 = \begin{pmatrix} \alpha\gamma \\ \alpha\delta \\ \beta\gamma \\ \beta\delta \end{pmatrix}, \quad A_1 \otimes B_2 = \begin{pmatrix} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{pmatrix}.$$

These are often useful in order to do calculations in components.