Objectifs
S.D.A
Listes
Piles

Bibliotheque
standard

Containers Programmation Orientée Objet :

Algorithmes et
maths

Structures de données abstraites et Bibliotheques

Jean-Cédric Chappelier

Faculté 1&C

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 1/64

Objectifs

Objectifs des deux derniers cours

Lobjectif de ces deux derniers cours est :

1. de compléter le cours d’ICC du premier semestre sur un point qui (2 mon avis) lui
manquait :
les structures de données abstraites :
» listes chainées

» piles

2. de vous présenter (sommairement) un certain nombre d’outils standards existant
en C++ («bibliotheque standard »)

Le but ici n’est pas d’étre exhaustif, mais simplement de vous :
» informer de I'existence des principaux outils

» faire prendre conscience d'aller lire/chercher dans la documentation les éléments
qui peuvent vous étre utiles

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 2/64

> Pourquoi modéliser les données ?

L’élaboration d’un algorithme est grandement facilitée par
I'utilisation de structures de données abstraites, de plus haut niveau,
et de fonctions de manipulations associées.

Une structure de données doit modéliser au mieux les informations a traiter
pour en formaliser les traitements (complément des algorithmes).

Choisir les bons modéles de données fait partie du choix de bons algorithmes :
algorithmes et structures de données abstraites sont intimement liés.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 3/64

C’est quoi une « structure de données abstraite » ?

Une structure de données abstraite (S.D.A.) est un ensemble organisé
d’informations (ou données) reliées logiquement et pouvant étre manipulées non
seulement individuellement, mais aussi comme un tout.

S.D.A.

Exemples généraux :

tableau (au sens général du terme)
contenu : divers éléments de types a préciser
interactions : demander la taille du tableau, accéder (lecture/écriture) a
chaque élément individuellement, ...

vecteur (au sens général, pas C++) : formalisation mathématique d’espace
vectoriel sur un corps J#°
contenu : n coordonnées (éléments de %)
interactions : les propriétés élémentaires définissant un espace vectoriel

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 4 /64

C’est quoi une « structure de données abstraite » ?

Une structure de données abstraite (S.D.A.) est un ensemble organisé
d’informations (ou données) reliées logiquement et pouvant étre manipulées non
seulement individuellement, mais aussi comme un tout.

S.DA.

Exemple informatique élémentaire :

Vous connaissez déja des structures de données abstraites, trés simples :
les types élémentaires.

Par exemple, un int
interactions : affectation, lecture de la valeur, +, -, *, /

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 4 /64

Spécifications des
structures de données abstraites

S.D.A.

Une S.D.A. est caractérisée par :
» son contenu
> les interactions possibles (manipulation, acces, ...)

Du point de vue informatique, une structure de données abstraite peut étre spécifiée
a deux niveaux :

» niveau fonctionnel / logique : spécification formelle des données et des
algorithmes de manipulation associés

» niveau physique (programmation) : comment est implémentée la structure de
données abstraite dans la mémoire de la machine

= déterminant pour I'efficacité des programmes utilisant ces données.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 5/64

Spécifications des S.D.A. [2]

S.D.A.

Au niveau formel (modéle), on veut généraliser cette idée « d’objets » manipulables
par des opérateurs propres, sans forcément en connaitre la structure interne et encore
moins I'implémentation.

Par exemple, vous ne pensez pas un int comme une suite de 32 bits, mais bien
comme un « entier » (dans un certain intervalle) avec ses opérations propres : +, -, *, /

Une structure de données abstraite définit une abstraction des données et cache les
détails de leur implémentation.

abstraction : identifier précisément les caractéristiques de I'entité (par rapport a ses
applications), et en décrire les propriétés.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 6/64

Spécifications des S.D.A. [3]

Une structure de données abstraite modélise donc I'« ensemble des services »
désirés (interface) plutét que I'organisation intime des données (détails
d'implémentation)

S.D.A.

On identifie usuellement 4 types de « services » :
1. les sélecteurs ou accesseurs, qui permettent « d’'interroger » la S.D.A.
2. les modificateurs, qui modifient la S.D.A.
3. les itérateurs, qui permettent de parcourir la structure
4. les constructeurs (pour l'initialisation)

Exemple : tableau dynamique

modifieur : ajout d’un élément (push_back(a))
sélecteur : lecture d’'un élément (t [i])
sélecteur : le tableau est-il vide ? (t.empty ())
itérateur : index d’'un élément ([i] ci-dessus)

Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 7/64

Divers exemples de S.D.A.

Il'y a beaucoup de structures de données abstraites en Informatique :
> tableaux (d’au moins quatre sortes; cf MOOC 1¢" semestre)

listes

piles

files d’attente (avec ou sans priorité)

tables associatives (dites « de hachage »)

multi-listes

arbres (pleins de sorte...)

graphes

vVvyVvyvVvyYvyyvYyy

Beaucoup sont offertes dans les bibliothéques de C++.
Vous avez déja vu :

> les tableaux (de taille fixe, dynamiques);
> les chaines de caractéres.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 8/64

Divers exemples de S.D.A.

Dans ce cours, nous allons tout d’abord détailler les deux plus fondamentales apres
les tableaux :

> les listes

> etles piles

puis nous en présenterons rapidement d’autres, ainsi que d’autres aspects des
bibliothéques de C++.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 9/64

Liste chainées A

Listes

Les listes chainées sont (comme les tableaux) Y
des SDA séquentielles, c’est-a-dire stockant des séquences d’éléments.

Par contre, dans une liste chainée, I'acces direct a un élément n’est pas possible
(contrairement aux tableaux).

Spécification logique :
Ensemble d’éléments successifs (sans d’accés direct), ordonnés ou non

Interactions :
> acces au premier élément (sélecteur)
acces a I'élément suivant d’un élément (sélecteur)
modifier I'élément courant (modificateur)
insérer/supprimer un élément aprées(/avant) I'élément courant (modificateur)
tester si la liste est vide (sélecteur)
parcourir la liste (itérateur)

©EPFL 2026
Jean-Cédric Chappelier

& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 10/ 64

vvyYVvyVvVyy

Listes

Listes

Exemple concret :
visionneuse stéreo (essayez

)
d’accéder a la 3e image directe- ‘ ® ‘1g

ment, sans passer par la 2e)

Exemple informatique :

Une liste peut étre vu comme une structure récursive :

liste = valeur + liste OU liste = vide

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 11/64

Réalisations d’une liste A

Listes
Implémentations possibles : .
> tableau dynamique (vector) (mais inconvénient 1 ci-aprés)

» classe :

class Element;
typedef Element* ListeChainee;

class Element {
private:
type_el valeur;
ListeChainee suite;

};

Note : Ce « truc » (prédéclaration), utilisé ici pour clarifier les concepts, est trés utile en cas de
dépendances cycliques entre données : A utilise des (pointeurs sur des) Bs lesquels utilisent des
(pointeurs sur des) As.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 12/64

Pourquoi les listes dynamiques ?

Listes

Les tableaux sont un type de données tres utile en programmation
mais présentent 2 limitations :

1. les données sont contigués (les unes derriéres les autres)
et donc l'insertion d’'un nouvel élément au milieu du tableau demande la recopie
(le décalage) de tous les éléments suivants.
= insertion en &(n)

2. augmenter la taille (lorsqu’elle n’est pas fixée) peut nécessiter la création d’'un
nouveau tableau
= 0(n)

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 13 /64

Complexité optimale des opérations élémentaires A

Listes

4
Liste tableau

accés a un élément précis : o(n) o)
insérer un élément

(quand on connait sa place!) : (1) o(n)
supprimer un élément : o) o(n)
parcourir la S.D.A. : o(n) 7(n)
calculer la longueur : o(n) o(n)

(voire @(1) si le stockage de cette valeur est effectué, en particulier si
« longueur » a été spécifiée dans les « services » de la SDA.

C’est par exemple le cas pour le vector et les array ou size () est &(1).
Ce n’est pas forcément le cas pour list ou forward_list car avoir
size() en €(1) peut avoir d’autres conséquences; et ce ne serait en
tout cas plus une liste chainée telle que décrite dans ce cours!)

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 14 /64

Listes chainées en C++
Les listes (simplement) chainées existent depuis ca—ﬂ\l dans la bibliothéque
forward_list.

Listes

Note : Les listes doublement chainées existent depuis C++98 : list

(quelques) méthodes des listes chainées :

Type& front() retourne le premier élément de la liste
void push_front(Type) ajoute un élément en téte de liste
void pop_front() supprime le premier élément

void insert_after(iterator, Type) insertion apres un élément de
la liste désigné par un itérateur

Exemple . #include <forward_list>
forward_list<int> ma_liste({ 6, 1, 5, -23, 3 });

for (auto element : ma_liste) {
cout << element << endl;

}

©EPFL 2026 .
Jean-Cédric Chappelier ma_liste.push_front(877);
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 15/64

Piles A

Piles 7
Spécification :
Une pile est une structure de données abstraite dynamique a 1 point d’acces,
contenant des éléments homogenes, et permettant :

> d’ajouter une valeur a la pile (empiler ou push);

» de lire la derniéere valeur ajoutée;

» d’enlever la derniére valeur ajoutée (dépiler ou pop);
> de tester sila pile est vide.

On ne « connait » donc de la pile que le dernier élément empilé (son sommet).

Exemples concrets :
> une pile d’assiettes
» une tour dans le jeu des tours de Hanoi

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 16 /64

Piles : exemple d’utilisation

Piles empiler x
empiler a
dépiler
empiler b
empilery
dépiler

©EPFL 2026

Jean-Cédric Chappelier

& Jamila Sam

EPEL

o [e

o<

Programmation Orientée Objet — S.D.A. et Bibliotheques — 17 /64

Exemples d’utilisation des piles
Le probléeme des parenthéses : étant donnée une expression avec des parenthéses,
Piles est-elle bien ou mal parenthésée ?
((a+b)xc—(d+4)x(5+(a+c)))x(c+(d+(e+5xg)xf)xa)
(correct)
(a+b)(
(incorrect)

Encore un peu plus complexe : différentes parenthéses
Exemple avec | et (

(IDIOCOM)] e correct

(D] e= incorrect

Autres exemples d'utilisation des piles (non traités ici) :
» tours de Hanoi

> notation postfixée (ou « polonaise inverse ») :
42+ 5x

©EPFL 2026

Jean-Cédric Chappelier (@ 5 X (4 + 2))

& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 18/64

Piles

©EPFL 2026

Jean-Cédric Chappelier
& Jamila Sam

=EPFL

Vérification de parenthésage

Tant que lire caractére ¢
Sicest (ou [
empiler ¢
Sinon
Sicest)oul
Si pile vide
ECHEC
Sinon
¢’ « lire la pile
Si ¢ et ¢ correspondent
dépiler
Sinon
ECHEC
Si pile vide
OK
Sinon
ECHEC

Exemple

Entrée : (D1

empile (| (]
empile [m
lu=),top=1"[

— ne correspond pas

= ERREUR

Programmation Orientée Objet — S.D.A. et Bibliotheques — 19/64

Deuxiéme Exemple

Entrée : ([O1)
Piles empl|e (

empile [
empile (

lu) — correspond = dépile

lu]l — correspond — dépile

lu) — correspond — dépile

©EPFL 2026
Jean-Cédric Chappelier H H
& gamia Sam pile vide — OK

EPEL

L
L]

Programmation Orientée Objet — S.D.A. et Bibliotheques — 20/ 64

Piles (et files) en C++

Pour utiliser les piles en C++ : #include <stack>

Piles

Les files d’attente sont des piles ou c’est le premier arrivé (empilé) qui est dépilé le
premier. Elles sont définies dans la bibliothéque <queue>.

Une pile de type type se déclare par stack<type> et une file d’attente par
queue<type>. Par exemple :

stack<double> une_pile;
queue<char> attente;

Méthodes : Type top() accede au premier élément (sans I'enlever)
void push(Type) empile/ajoute
void pop() dépile/supprime
bool empty () teste si la pile/file est vide

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 21/64

Code C++ de I’exemple

#include <stack>
Piles
bool check(string const& s) {
stack<char> p;
for (auto const& c : s) {
if ((c == "'(") or (c == "'["))
p.push(c);
else if (c == ")") {
if ((not p.empty()) and (p.top()
p-popQ);
else
return false;
} else if (c == '1") {
if ((not p.empty()) and (p.top()
p.popQ);
else
return false;
¥
}
return p.empty();
}

©EPFL 2026
Jean-Cédric Chappelier

& Jamila Sam

EPEL

Programmation Orientée Objet — S.D.A. et Bibliotheques — 22 /64

Bibliothéque standard

Bibiothéque La bibliothéque standard (d’outils) C++ facilite la programmation et permet de la
rendre plus efficace, si tant est que I'on connaisse bien les outils qu’elle fournit.

Cette bibliotheque est cependant vaste et complexe, mais elle peut dans la plupart des
cas s’utiliser de fagon tres simple, facilitant ainsi la réutilisation des structures de
données abstraites et des algorithmes sophistiqués qu’elle contient.

La bibliothéque standard C++23 est formée de 105 « paquets » :
» 32 « d’origine » (C++89)
» 52 « nouveaux » : 19 de C++11, 1 de C++14, 8 de C++17, 15 de C++20
et 9 de C++23
> et 21 bibliotheques du C

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 23 /64

Contenu de la bibliothéque standard

La bibliothéque standard C++ contient 32 « paquets » du C++ d’origine :

Bbliothéaue <algorithm> plusieurs algorithmes utiles
<bitset> gestions d’ensembles de bits
<complex> les nombres complexes
<deque> tableaux dynamiques avec push_front
<exception> diverses fonctions aidant a la gestion des exceptions
<fstream> manipulation de fichiers
<functional> objets fonctions
<iomanip> manipulation de I'état des flots
<ios> définitions de base des flots
<iosfwd> anticipation de certaines déclarations de flots
<iostream> flots standards
<istream> flots d’entrée
<iterator> itérateurs
<limits> diverses bornes concernant les types numériques
<list> listes doublement chainées
<locale> contrbles liés au choix de la langue

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 24 /64

Bibliotheque
standard

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

<map>
<memory>
<new>
<numeric>
<ostream>
<queue>
<set>
<sstream>
<stack>
<stdexcept>
<streambuf>
<string>
<typeinfo>
<utility>
<valarray>
<vector>

Contenu de la bibliothéque standard (2)

tables associatives clé—valeur ordonnées
gestion mémoire pour les containers
gestion mémoire

fonctions numériques

flots de sortie

files d’attente

ensembles ordonnés

flots dans des chaines de caracteres
piles

gestion des exceptions

flots avec tampon (buffer)

chaines de caractéeres

information sur les types

divers utilitaires

tableaux orientés vers les valeurs
tableaux dynamiques

Programmation Orientée Objet — S.D.A. et Bibliotheques — 25/64

Bibliotheque
standard

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Contenu de la bibliothéque standard (3)

19 « paquets » de caﬂ :

<array>
<atomic>
<chrono>

<condition_variable>

<forward_list>
<future>
<initializer_list>
<mutex>

<random>

<ratio>

<regex>
<scoped_allocator>
<system_error>
<thread>

<tuple>
<type_traits>
<typeindex>
<unordered_map>
<unordered_set>

tableaux de taille fixe

expression atomique

heures et chronométres
concurence (multi-thread)

listes simplement chainées
concurence (multi-thread)

listes d’initialisation

concurence (multi-thread)
nombres aléatoires

constantes rationnelles (Q)
expressions réguliéres

allocation mémoire

erreurs systeme

concurence (multi-thread)

n-uples

caractéristiques de types

utiliser les types comme index de containers
tables associatives non ordonnées
ensembles non ordonnés

Programmation Orientée Objet — S.D.A. et Bibliotheques — 26 /64

Contenu de la bibliothéque standard (4)

Bibliotheque

standard 1 « paquet » de C++14 :

<shared_mutex> programmation concurrente

8 « paquets » de C++17 :

<any> « fourre-tout » (une valeur de n’importe quel type)
<charconv> conversion de séquence de caractéres en valeur numérique
<execution> programmation paralléle

<filesystem> gestion du systeéme de fichiers

<memory_resource> gestion mémoire polymorphique

<optional> valeur possiblement absente

<string_view> « vues » sur des chaines de caracteres

<variant> « fourre-tout » parmi des types choisis

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 27 /64

Bibliotheque
standard

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Contenu de la bibliothéque standard (5)

15 « paquets » de C++20 :

<barrier>
<bit>
<compare>
<concepts>
<coroutine>
<format>
<latch>
<numbers>
<ranges>
<semaphore>
<source_location>

<stop_token>
<syncstream>
<version>

« barriéres » (pour les threads)

manipulation de bits

« 3-way comparison » et ordres (mathématiques)

« equationnal reasoning » (propriétés syntaxiques et sémantiques)
co-routines (fonctions en attente)

formater plus facilement du texte

« verrous » (pour les threads)

diverses constantes

« intervalles » d'itérateurs

« sémaphores » (pour les threads)

informations sur le code source

non-owning view over a contiguous sequence of objects
pour stopper les threads

sorties (flots) synchrones

informations sur les outils disponibles

Programmation Orientée Objet — S.D.A. et Bibliotheques — 28 /64

Contenu de la bibliothéque standard (6)

Bibliotheque
standard

9 « paquets » de C++23 :

<expected> valeur ou erreur

<flat_map> table associative dont les éléments sont contiglis en mémoire
<flat_set> ensemble dont les éléments sont contiglis en mémoire
<generator> generateurs de séquences de valeurs

<mdspan> « vue » sur tableaux multidimensionnels

<print> affichages formatés

<spanstream> entrées/sorties avec tampon de taille fixe
<stacktrace> pile des appels
<stdfloat> nombres a virgule flotante de taille (nb bits) fixée

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 29 /64

Bibliotheque
standard

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=EPFL

Contenu de la bibliothéque standard (7)

Il existe aussi dans les outils standards les 21 « paquets» venant du langage C :

<cassert>
<cctype>
<cerrno>
<cfenv>
<cfloat>
<cinttypes>
<climits>
<clocale>
<cmath>
<csetjmp>
<csignal>
<cstdarg>
<cstddef>
<cstdio>
<cstdint>
<cstdlib>
<cstring>

test d’invariants lors de I'exécution

diverses informations sur les caracteres

code d’erreurs retournés dans la bibliotheque standard
manipulation des régles de gestion des nombres en virgule flottante
diverses informations sur la représentation des réels
int de taille fixée (C99)

diverses informations sur la représentation des entiers
adaptation a diverses langues

diverses définitions mathématiques

branchement non locaux

contrble des signaux (processus)

nombre variable d’arguments

diverses définitions utiles (types et macros)

entrées sorties de base

sous-partie de cinttypes

diverses opérations de base utiles

manipulation des chaines de caracteres ala C

Programmation Orientée Objet — S.D.A. et Bibliotheques — 30/ 64

Contenu de la bibliothéque standard (7)

<ctime> diverses conversions de date et heures
<cuchar> char de 16 ou 32 bits
Bibliothéque <cwchar> utilisation des caracteres étendus

standard

<cwctype> classification des codes de caracteres étendus

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 31/64

Outils standards

Bibliotheque

standard On distingue plusieurs types d'outils.

Parmi les principaux :
> les containers de base
les containers avancés (appelés aussi « adaptateurs »)
les itérateurs
les algorithmes
les outils numériques
les traitements d’erreurs
les chaines de caractéres
les flots

vVvyVvyVvyVvyYyvyy

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 32/64

Bibliotheque
standard

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=EPFL

Outils standards (2)

Les outils les plus utilisés par les débutants sont :

>

vVvyVvyvVvyVvyYyvyy

les chaines de caractéres (string)

les flots (stream)

les tableaux dynamiques (vector) [container]
les listes chainées (1ist) [container avancé]
les piles (stack) [container avancé]

les algorithmes de tris (sort ())

les algorithmes de recherche (£ind())

les itérateurs (iterators)

A N N R N

Programmation Orientée Objet — S.D.A. et Bibliotheques — 33 /64

Plan

Présentons maintenant certains des outils standards de fagon plus détaillée :

généralités

v

set/unordered_set [container]
iterator
map/unordered_map [container]
sort

find

complex

cmath

vyVvVvyvyVvyVvYyYyvyy

random

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 34 /64

généralités

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=EPFL

Containers

Comme le nom l'indique, les containers sont des structures de données abstraites
servant a contenir (« collectionner ») d’autres objets.

Vous en connaissez déja plusieurs : tableaux, listes chainées, piles et files d’attentes.

Il en existe plusieurs autres, parmi lesquels les ensembles (set, unordered_set) et les
tables associatives (map, unordered_map).

Les set permettent de gérer des ensembles au sens mathématique du terme (finis et
ordonnés) : collection d’éléments ou chaque élément n’est présent qu’une seule fois.

Les tables associatives sont une généralisation des tableaux ou les indexes ne sont
pas forcément des entiers.

Imaginez par exemple un tableau que 'on pourrait indexer par des chaines de
caracteres et écrire par exemple tab["Informatique"]

Programmation Orientée Objet — S.D.A. et Bibliotheques — 35/64

généralités

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=PrFL

Containers (2)

(Presque) Tous les containers contiennent les méthodes suivantes :
bool empty() : le containers est-il vide ?

size_t size() : nombre d’éléments contenus dans le container
(sauf forward_list)

void clear() :vide le container
(sauf array, stack, queue et priority_queue)

iterator erase(<t) :supprime du container I'élément pointé par it. <t est un
itérateur (généralisation de la notion de pointeur, voir quelques transparents plus loin)
(sauf forward_list, array, stack, queue et priority_queue)

lls possédent également tous (sauf stack, queue et priority_queue) les méthodes
begin(), cbegin(), end() et cend() que nous verrons avec les itérateurs.

Programmation Orientée Objet — S.D.A. et Bibliotheques — 36 /64

Tableaux dynamiques : petit complément

Pour accéder directement a un élément d’un tableau dynamique (vector) on utilise
lopérateur [] : tab[i].

Il existe une autre méthode pour cet acces : at (n) qui, a la différence de [n], lance
s Iexception out_of_range (de la bibliothéque <stdexcept>) si n n'est pas un index
correct.

iterator

Exemp|e : #include <vector>
map #include <stdexcept>

vector<int> v(5,3); // 3, 3, 3, 3, 3

int n(12);
try {
cout << v.at(n) << endl;
}
catch (out_of_range) {
cerr << "Erreur : " << n << " n'est pas correct pour v"
<< endl
<< "qui ne contient que " << v.size() << " éléments."
<< endl;

©EPFL 2026 }
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 37 /64

Ensembles

Les ensembles (au sens mathématique) sont implémentés dans la bibliotheque <set>.
lIs contiennent des éléments d’'un méme type, ordonnés par operator<.

(Pour des éléments (d’'un méme type) non ordonnés, c.-a-d. sans operator<, on utilisera un
unordered_set.)

On déclare un ensemble comme les autres containers, en spécifiant le type de ses
&lémen r exemple :
elements, par exemple set<char> monensemble;

Les ensembles sont une SDA non-indexée : I'acces direct a un élément n’est pas
possible.

(quelques) méthodes des ensembles :

insert (Type) insére un élément s’il n'y est pas déja

erase(Type) supprime I'élément (s'il y est)

find(Type) retourne un itérateur indiquant I'élément
recherché

I A noter que la bibliothéque <algorithm> fournit des fonctions pour faire la réunion,
sancericcrapeier 'jnitersection et la différence d’ensembles.

& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 38 /64

Ensembles — Exemple

#include <set>
set<char> voyelles;

voyelles.insert('a');
voyelles.insert('b');
voyelles.insert('e');
voyelles.insert('i');
voyelles.erase('b');
voyelles.insert('e'); // n'insere pas

1ot

e' car il y est déja

Comment parcourir cet ensemble ?

for (size_t i(0); i < voyelles.size(); ++i)
cout << voyelles[i] << endl;

ne fonctionne pas car c’est une SDA non-indexée.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 39/64

Ensembles — parcours

Comment parcourir cet ensemble ?

Depuis cuﬂ c’est facile :

for (auto const v : voyelles) {
cout << v << endl;

}

Il y a aussi un autre moyen, plus avancé :

== Utilisation d’itérateurs

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Programmation Orientée Objet — S.D.A. et Bibliotheques — 40/64

Itérateurs

Les itérateurs sont une SDA généralisant aux containers
d’'une part les accées par index et d’autre part les pointeurs.

iterator

lls permettent :
» de parcourir de fagon itérative les containers
» d’indiquer (c.-a-d. de pointer sur) un élément d’'un container

Il existe en fait 7 sortes d'itérateurs, mais nous ne parlons ici que de la plus générale,
qui permet de tout faire : lecture et écriture du container, aller en avant ou en arriére
(acces quelconque en fait).

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 41/64

Itérateurs (2)

Un itérateur associé a un container ¢<type> se déclare simplement comme
(<type>::iterator nom;

ou C<type>::const_iterator nom;

si 'on ne modifie pas le container lors du parcours.

Exemples :

iterator

vector<double>::iterator ij;
set<char>::const_iterator j; // en lecture seule

Il peut s'initialiser grace aux méthodes begin(), cbegin(), end() ou cend() du
container, voire d’autres méthodes spécifiques, comme par exemple £find () pour les
containers non-séquentiels.

Exemples :

vector<double>::iterator i(monvect.begin());
set<char>::const_iterator j(monset.find(monelement));

Lélément indiqué par I'itérateur i est simplement *i, comme pour les pointeurs.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 42 /64

Retour sur I'exemple des ensembles

Pour parcourir notre ensemble précédent, nous pouvons donc faire :

for (set<char>::const_iterator i(voyelles.cbegin());

généralités

o i 1= voyelles.cend(); ++i) {
iterator cout << *i << endl;

Exemple }

arase

map

Exemple d'utilisation de £ind () :

set<char>::const_iterator i(voyelles.find('c'));
if (i == voyelles.cend()) {

cout << "pas trouvé" << endl;
} else {

cout << *i << " trouvé" << endl;

}

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 43 /64

généralités
set
iterator
Exemple
erase

map

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Code complet de I’exemple

#include <set>

#include <iterator>
#include <iostream>
using namespace std;

int main() {
set<char> voyelles;

voyelles.insert('a');

voyelles.insert('b');

voyelles.insert('e');

voyelles.insert('i');

voyelles.insert('a'); // ne fait rien car 'a' y est déja
voyelles.erase('b'); // supprime 'b'

// parcourt 1'ensemble
for (auto const v : voyelles) cout << v << endl;

// recherche d'un élément
set<char>::const_iterator element(voyelles.find('c'));

if (element == voyelles.cend())

cout << "je n'ai pas trouvé." << endl;
else

cout << *element << " trouvé !" << endl;
return O;

Programmation Orientée Objet — S.D.A. et Bibliotheques — 44 /64

Suppression d’'un élément d’un container A
On a vu que tout container possédait une méthode

iterator erase(it)
permettant de supprimer un élément, mais...

- Attention ! On ne peut pas continuer & utiliser l'itérateur it!
(plus exactement : erase rend invalide tout itérateur et référence situé(e) au dela du premier
o point de suppression)

Exemple d’erreur classique : ceci n’est pas correct («Segmentation fault»):

vector<double> v;

for (vector<double>::iterator i(v.begin()); i != v.end(); ++i)
if (cond(*i)) v.erase(i);

(avec bool cond(double) ;)

pas plus que :
for (vector<double>::iterator i(v.begin()); i != v.end(); ++i)
©EPFL 2026
Jean-Cédric Chappelier if (cond(*i)) i = v.erase(i);

& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 45/64

Suppression d’'un élément d’un container (2)
Ce qu’il faut faire c’est :

vector<double>::iterator next;
for (vector<double>::iterator i(v.begin()); i != v.end(); i = next) {
if (cond(*i)) { next = v.erase(i); }
géneralités else { next =i+ 1; }

ou mieux en utilisant remove_if (OU remove) de <algorithm> :

v.erase(remove_if (v.begin(), v.end(), cond), v.end());
mais qui sont de toutes facons «colteux» (0(v.size()?))

En effet, un tableau dynamique n’est pas la bonne SDA si I'on veut détruire un élément au
milieu et garder I'ordre (w= listes chainées)

Note : si I'on ne tient pas a garder I'ordre, on peut toujours faire :

for (size_t i(0); i < v.size(); ++i)
if (cond(v[il)) {
swap(v[i], v.back());

GEPFL 2026 v.pop_back();
Jean-Cédric Chappelier

& Jamila Sam --1;

E PF L } Programmation Orientée Objet — S.D.A. et Bibliothéques — 46 /64

Tables associatives

Les tables associatives sont une généralisation des tableaux ou les indexes ne sont
pas forcément des entiers.

Imaginez par exemple un tableau que 'on pourrait indexer par des chaines de
caracteres et écrire par exemple tab["Informatique"]

On parle d’« associations clé—valeur »
Les tables associatives sont définies dans la bibliothéque <map>.

Elles nécessitent deux types pour leur déclaration :
le type des « clés » (les indexes) et le type des éléments indexé.

Par exemple, pour indexer des nombres réels par des chaines de caractéres on
déclarera :
map<string,double> une_variable;

Si l'ordre (operator<) des clés n'importe pas, on utilisera une unordered_map.
©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 47 /64

généralités
set

iterator

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Tﬂklﬁﬁ ﬂﬁﬁﬁﬁ:ﬂ*:l'ﬁﬁ nvnmv\ln

#include <map>
#include <string>
#include <iostream>
using namespace std;

int main() {
map<string,double> moyenne;

moyenne ["Informatique"] =
moyenne ["Physique"] =
moyenne ["Histoire des maths"] =
moyenne ["Analyse"] =
moyenne ["Algébre"] =

[S2 S SR]
oo oo o,

// parcours de tous les éléments
for (map<string,double>::iterator i(moyenne.begin());
i != moyenne.end(); ++i) {
cout << "En " << i->first << ", j'ai " << i->second
<< " de moyenne." << endl ;

}

// recherche
const map<string,double>% m = moyenne; // pour forcer
cout << "Ma moyenne en Informatique est de ";
/* cout << m["Informatique"] << endl; // ne compile pas
// il insére si
cout << m.find("Informatique")->second << endl;

return 0;

\V/EDCINANL /~N. .00

le comnst

parce que m[] est non const
1'élément n'est pas présent. */

Programmation Orientée Objet — S.D.A. et 'bliothéques — 48/64

TAk'nn AanaAanintivuan Aavamanla \/IEDCINAN N . .44

#include <map>
#include <string>
#include <iostream>
using namespace std;

int main() {
map<string,double> moyenne;

généralités

set

moyenne ["Informatique"] =
moyenne ["Physique"] =
moyenne ["Histoire des maths"] =
moyenne ["Analyse"] =
moyenne ["Algébre"] =

iterator

[S2 S SR]
oo oo o,

// parcours de tous les éléments
for (auto i : moyenne) {
cout << "En " << i.first << ", j'ai " << i.second
<< " de moyenne." << endl ;

// recherche
const map<string,double>% m = moyenne;
cout << "Ma moyenne en Informatique est de "
<< m.at("Informatique") << endl;
©EPFL 2026

Jean-Cédric Chappelier return 0;
& Jamila Sam }

=EPFL Biogiammalion Qrientée Obiel = S.DA et Bbliotheques — 49 /64

généralités
set

iterator

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Tnlp\'nn AanaAanintivuan Aavamanla \/EDCIAN /N, . 477

#include <map>
#include <string_view>
#include <iostream>
using namespace std;

int main() {
map<string_view,double> moyenne;

moyenne ["Informatique"] =
moyenne ["Physique"] =
moyenne ["Histoire des maths"] =
moyenne ["Analyse"] =
moyenne ["Algébre"] =

[S2 S SR]
oo oo o,

// parcours de tous les éléments
for (auto&& [cours, note] : moyenne) {
cout << "En " << cours << ", j'ai " << note
<< " de moyenne." << endl ;

// recherche

const map<string_view,double>% m = moyenne;

cout << "Ma moyenne en Informatique est de "
<< m.at("Informatique") << endl;

return O;

Biogiammalion Qrientée Obiel = S.DA et Bbliotheques — 50 /64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=PrFL

Algorithmes

La bibliothéque algorithm (C.-a-d. #include <algorithm>) fournit I'implémentation
d’'un grand nombre d’algorithmes généraux :

» de séquencement
quelques exemples : for_each, find, copy

» de tris
sort, mais aussi bien d’autres

> numériques
inner_product, partial_sum, adjacent_difference
> ...

3 exemplesici :
» find
> copy et les output_iterators
> sort
pour les autres : référez-vous a la documentation

Programmation Orientée Objet — S.D.A. et Bibliotheques — 51 /64

find ()

find () implémente un algorithme général permettant de faire des recherches dans
(une partie d’)un container.
Son prototype général est :
iterator find(iterator debut, iterator fin, Type valeur);
Algorithmes et qui cherche valeur entre debut (inclu) et £in (exclu). Elle retourne un itérateur sur le
e contenu correspondant a la valeur recherchée ou fin si cette valeur n’est pas trouvée.

Exemple :
list<int> uneliste;

uneliste.push_back(3);
uneliste.push_back(1);
uneliste.push_back(7);

list<int>::iterator result(find(uneliste.begin(), uneliste.end(), 7));

if (result !'= uneliste.end()) cout << "trouveé";
else cout << "pas trouvé";
©EPFL 2026 cout << endl;
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 52/ 64

copy ()

copy () implémente un algorithme général pour copier (une partir d’)un container dans
un autre.

Son prototype général est :

Algorithmes et OutputIterator copy(Inputlterator debut, InputlIterator fin,
maths OutputIterator resultat);

qui copie le contenu compris entre debut (inclus) et £in (exclus) vers resultat (inclus)
et les positions suivantes (itérateurs).

La valeur de retour est resultat + (fin - debut).

Attention ! Notez bien que cela copie des éléments, mais ne fait pas d’insertion :
ﬁﬁ il faut absolument que resultat ait (c.-a-d. pointe sur) la place nécessaire !

Exemple :

copy (unensemble.begin(), unensemble.end(), untableau.begin());

s eneier NOtEZ QuUe I'on peut ainsi copier des données d’une SDA dans une autre SDA d’un autre type.

& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 53 /64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=EPFL

copy () peut étre trés utile pour afficher le contenu d’un
un ostream_iterator (je ne donne qu’un exemple ici :)

copy(container.begin(), container.end(),
ostream_iterator<int>(cout, ", "));

container contenant ici des int.
Son contenu sera affiché sur cout, séparé par des « ,

container sur un flot en utilisant

».

Programmation Orientée Objet — S.D.A. et Bibliotheques — 54 /64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

€D copy O — Exemple complet

#include <iostream>
#include <set>
#include <vector>
#include <iterator>
using namespace std;

int main() {
set<double> unensemble, unautre;

unensemble.insert(1.1); unensemble.insert(2.2);
unensemble.insert(3.3);

// copy(unensemble.begin(), unensemble.end(), unautre.begin());
// ne fonctionnerait pas ("assignment of read-only location")
// car, ici, unautre n'a pas la taille suffisante.

vector<double> untableau(unensemble.size()); // prévoit la place
copy (unensemble.begin(), unensemble.end(), untableau.begin());

// output

cout << "untableau = ";

copy (untableau.begin(), untableau.end(),
ostream_iterator<double>(cout, ", "));

cout << endl;

return 0;

Prograi

mation Orientée Objet — S.D.A. et Bibliotheques — 55/ 64

sort ()
sort () permet de trier des SDA implémentées sous forme de containers

La version la plus simple de tri est (il y en a d’autres) :
void sort(iterator debut, iterator fin)
qui utilise operator< des éléments contenus dans la partie du container indiquée par
Algorithmes et .
maths debut et fin
(les objets qui y sont stockés doivent donc posséder cet opérateur)

Exemple :

list<double> uneliste;

sort (uneliste.begin(), uneliste.end());

@ Exemple plus avancé (qui affiche « 12457 8 ») :

constexpr size_t N(6);

int montableau[N] = { 1, 4, 2, 8, 5, 7 };

sort (montableau, montableau + N);

copy (montableau, montableau + N, ostream_iterator<int>(cout, " "));
©EPFL 2026) cout << endl;
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 56 /64

Nombres Complexes

La bibliothéque <complex> définit les nombres complexes.

lls se déclarent par complex<double>. lls possedent un constructeur a 2 parametres
Agorithmes et permettant de préciser les parties réelle et imaginaire, p.ex.
maths complex<double> c(3.2,1.4), i(0,1);

Par contre, il n’existe pas de constructeur permettant de créer un nombre complexe a
partir de ses coordonnées polaires.

En revanche, la fonction polar, qui prend comme paramétres la norme et 'argument
du complexe a construire, permet de le faire. Cette fonction renvoie le nombre
complexe nouvellement construit :

¢ = polar(sqrt(3.0), M_PI / 12.0);

Les méthodes des nombres complexes sont real () qui retourne la partie réelle,
imag() qui retourne la partie imaginaire, et bien s(r les operateurs usuels.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 57 /64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=EPFL

Nombres Complexes (2)

Ce qui est plus inattendu c’est que les opérations de norme, argument, et conjugaison
n’ont pas été implémentées sous forme de méthodes, mais de fonctions :

double abs(const complex<double>&) retourne la norme (au
sens francais du terme) du

nombre complexe

double norm(const complex<double>%) retourne le carré de la

norme

double arg(const complex<double>&) retourne I’argument du

nombre complexe
complex<double> conj(const complex<double>&)

retourne le complexe conjugué

La bibliothéque fournit de plus les extensions des fonctions de base (trigonométriques,

logarithmes, exponentielle) aux nombres complexes.

Programmation Orientée Objet — S.D.A. et Bibliotheques — 58 /64

Détails de <cmath>
Quelques fonctions définies dans la bibliothéque <cmath> :

abs valeur absolue
acos arccos
asin arcsin
Algorithmes et atan arctan
mathe ceil [x], entier supérieur
cos Cos
cosh cosinus hyperbolique
exp exp
floor | x|, entier inférieur
log In, logarithme népérien
logl0 log, logarithme en base 10
pow(x,y) x¥ =exp(yInx)— (préférez la multiplication pour les faibles puissances entiéres)
sin sin
sinh sinus hyperbolique
sqrt \[
tan tan
Jeancasiccraeir tanh tangente hyperbolique

& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 59 /64

Détails de <cmath> (2)

Quelques constantes :

non ISO, mais souvent disponible avec depuis C++20, avec :
#define _USE_MATH_DEFINES #include <numbers>
s (avant les #include) using namespace std::numbers;
T M_PI pi
e M_E e
V2 M_SQRT2 sqrt2
In(2) M_LN2 1n2
In(10) M_LN10 1n10
logs(e€) M_LOG2E log2e
1 M_1_PI inv_pi
V3 — sqrt3

... (et encore plein d’autres)

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 60/ 64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=PrFL

Nombres aléatoires

La génération de nombres au hasard sur ordinateur se fait avec des générateurs dit
« pseudo-aléatoires » qui pour une valeur initiale donnée (appelée « graine »

[« seed » en anglais]) donnent toujours la méme séquence « aléatoire » (suivant une
distribution de probabilités choisie).

Utiliser la méme graine peut étre utile pour déverminer un programme utilisant des
nombres aléatoires.

Pour avoir une série de nombres aléatoires différente a chaque utilisation du
programme, il faut utiliser une graine différente a chaque fois.

[Méme si ce n'est pas terrible,] Cela se fait souvent en utilisant comme graine la valeur de
I'horloge de I'ordinateur a cet instant.

Une autre solution consiste a tirer la graine (voire la séquence elle-méme) depuis un
périphérique matériel suffisement aléatoire (« random device ») :
(micro-)déplacement de la souris, température du processeur, ...

Programmation Orientée Objet — S.D.A. et Bibliotheques — 61 /64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=EPFL

Nombres aléatoires (2)

Dans la bibliotheque <random> (cﬂ'ﬂ), il existe différents générateurs de nombres
pseudo-aléatoires et différentes distributions de probabilités.

Les deux doivent étre combinés pour pouvoir effectuer une série de tirage.

Ci-aprés un exemple simple pour tirer de fagon uniforme un nombre aléatoire entier

entre min et max.

Programmation Orientée Objet — S.D.A. et Bibliotheques — 62/ 64

Algorithmes et
maths

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Nombres aléatoires : exemple

#include <iostream>

#include <functional> // pour bind()
#include <random>

using namespace std;

int main()

{
// par exemple (dé 7)
constexpr int min(1), max(6);

// distribution uniforme entre min et max
uniform_int_distribution<int> distribution(min, max);

random_device rd; // utilisé ici pour la graine

unsigned int graine(rd()); // par exemple, ou sinon de votre choix

// choix du générateur et initialisation (graine)
default_random_engine generateur(graine);

auto tirage(bind(distribution, generateur)); // ésotérisme

for (unsigned int i(1); i <= 10; ++i) { // 10 tirages
cout << tirage() << endl;
¥

return 0;

Programmation Orientée Objet — S.D.A. et Bibliotheques — 63 /64

Ce que j’ai appris

> Les bases de la formalisation des données : les structures de données
abstraites

Conclusion > Les deux structures de données abstraites les plus utilisées en informatique (en
plus des tableaux et des types élémentaires) :
les listes chainées et les piles

> Qu'il existe beaucoup d’outils prédéfinis dans la bibliothéque standard de C++

Le but n'est évidemment pas de les connaitre tous par coeur, mais de
savoir qu’ils existent pour penser aller chercher dans la documentation
les informations complémentaires.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — S.D.A. et Bibliotheques — 64 /64

	Objectifs
	S.D.A.
	Listes
	Piles
	Bibliothèque standard
	Containers
	généralités
	set
	iterator
	Exemple
	erase
	map

	Algorithmes et maths
	Conclusion

