
Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Programmation Orientée Objet :

Structures de données abstraites et Bibliothèques

Jean-Cédric Chappelier

Faculté I&C

Programmation Orientée Objet – S.D.A. et Bibliothèques – 1 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Objectifs des deux derniers cours

L’objectif de ces deux derniers cours est :
1. de compléter le cours d’ICC du premier semestre sur un point qui (à mon avis) lui

manquait :
les structures de données abstraites :
▶ listes chaînées
▶ piles

2. de vous présenter (sommairement) un certain nombre d’outils standards existant
en C++ (« bibliothèque standard »)

Le but ici n’est pas d’être exhaustif, mais simplement de vous :
▶ informer de l’existence des principaux outils
▶ faire prendre conscience d’aller lire/chercher dans la documentation les éléments

qui peuvent vous être utiles

Programmation Orientée Objet – S.D.A. et Bibliothèques – 2 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Pourquoi modéliser les données?

L’élaboration d’un algorithme est grandement facilitée par
l’utilisation de structures de données abstraites, de plus haut niveau,
et de fonctions de manipulations associées.

Une structure de données doit modéliser au mieux les informations à traiter
pour en formaliser les traitements (complément des algorithmes).

Choisir les bons modèles de données fait partie du choix de bons algorithmes :
algorithmes et structures de données abstraites sont intimement liés.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 3 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

C’est quoi une « structure de données abstraite »?
Une structure de données abstraite (S.D.A.) est un ensemble organisé
d’informations (ou données) reliées logiquement et pouvant être manipulées non
seulement individuellement, mais aussi comme un tout.

Exemples généraux :
tableau (au sens général du terme)

contenu : divers éléments de types à préciser
interactions : demander la taille du tableau, accéder (lecture/écriture) à
chaque élément individuellement, ...

vecteur (au sens général, pas C++) : formalisation mathématique d’espace
vectoriel sur un corps K
contenu : n coordonnées (éléments de K )
interactions : les propriétés élémentaires définissant un espace vectoriel

Programmation Orientée Objet – S.D.A. et Bibliothèques – 4 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

C’est quoi une « structure de données abstraite »?
Une structure de données abstraite (S.D.A.) est un ensemble organisé
d’informations (ou données) reliées logiquement et pouvant être manipulées non
seulement individuellement, mais aussi comme un tout.

Exemple informatique élémentaire :

Vous connaissez déjà des structures de données abstraites, très simples :
les types élémentaires.

Par exemple, un int
interactions : affectation, lecture de la valeur, +, -, *, /

Programmation Orientée Objet – S.D.A. et Bibliothèques – 4 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Spécifications des
structures de données abstraites

Une S.D.A. est caractérisée par :
▶ son contenu
▶ les interactions possibles (manipulation, accès, ...)

Du point de vue informatique, une structure de données abstraite peut être spécifiée
à deux niveaux :
▶ niveau fonctionnel / logique : spécification formelle des données et des

algorithmes de manipulation associés
▶ niveau physique (programmation) : comment est implémentée la structure de

données abstraite dans la mémoire de la machine

☞ déterminant pour l’efficacité des programmes utilisant ces données.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 5 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Spécifications des S.D.A. [2]

Au niveau formel (modèle), on veut généraliser cette idée « d’objets » manipulables
par des opérateurs propres, sans forcément en connaître la structure interne et encore
moins l’implémentation.

Par exemple, vous ne pensez pas un int comme une suite de 32 bits, mais bien
comme un « entier » (dans un certain intervalle) avec ses opérations propres : +, -, *, /

Une structure de données abstraite définit une abstraction des données et cache les
détails de leur implémentation.

abstraction : identifier précisément les caractéristiques de l’entité (par rapport à ses
applications), et en décrire les propriétés.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 6 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Spécifications des S.D.A. [3]

Une structure de données abstraite modélise donc l’« ensemble des services »
désirés (interface) plutôt que l’organisation intime des données (détails
d’implémentation)

On identifie usuellement 4 types de « services » :
1. les sélecteurs ou accesseurs, qui permettent « d’interroger » la S.D.A.
2. les modificateurs, qui modifient la S.D.A.
3. les itérateurs, qui permettent de parcourir la structure
4. les constructeurs (pour l’initialisation)

Exemple : tableau dynamique
modifieur : ajout d’un élément (push_back(a))
sélecteur : lecture d’un élément (t[i])
sélecteur : le tableau est-il vide? (t.empty())
itérateur : index d’un élément ([i] ci-dessus)

Programmation Orientée Objet – S.D.A. et Bibliothèques – 7 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Divers exemples de S.D.A.

Il y a beaucoup de structures de données abstraites en Informatique :
▶ tableaux (d’au moins quatre sortes ; cf MOOC 1er semestre)
▶ listes
▶ piles
▶ files d’attente (avec ou sans priorité)
▶ tables associatives (dites « de hachage »)
▶ multi-listes
▶ arbres (pleins de sorte...)
▶ graphes

Beaucoup sont offertes dans les bibliothèques de C++.
Vous avez déjà vu :
▶ les tableaux (de taille fixe, dynamiques) ;
▶ les chaînes de caractères.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 8 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Divers exemples de S.D.A.

Dans ce cours, nous allons tout d’abord détailler les deux plus fondamentales après
les tableaux :
▶ les listes
▶ et les piles

puis nous en présenterons rapidement d’autres, ainsi que d’autres aspects des
bibliothèques de C++.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 9 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Liste chaînées

Les listes chaînées sont (comme les tableaux)
des SDA séquentielles, c’est-à-dire stockant des séquences d’éléments.

Par contre, dans une liste chaînée, l’accès direct à un élément n’est pas possible
(contrairement aux tableaux).

Spécification logique :
Ensemble d’éléments successifs (sans d’accès direct), ordonnés ou non

Interactions :
▶ accès au premier élément (sélecteur)
▶ accès à l’élément suivant d’un élément (sélecteur)
▶ modifier l’élément courant (modificateur)
▶ insérer/supprimer un élément après(/avant) l’élément courant (modificateur)
▶ tester si la liste est vide (sélecteur)
▶ parcourir la liste (itérateur)

Programmation Orientée Objet – S.D.A. et Bibliothèques – 10 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Listes

Exemple concret :

visionneuse stéreo (essayez
d’accéder à la 3e image directe-
ment, sans passer par la 2e !)

Exemple informatique :
( a ( b ( c (d ()))))

a b c d /0

Une liste peut être vu comme une structure récursive :

liste = valeur + liste OU liste = vide

Programmation Orientée Objet – S.D.A. et Bibliothèques – 11 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Réalisations d’une liste

Implémentations possibles :
▶ tableau dynamique (vector) (mais inconvénient 1 ci-après)

▶ classe :
class Element;
typedef Element* ListeChainee;

class Element {
private:

type_el valeur;
ListeChainee suite;

};

Note : Ce « truc » (prédéclaration), utilisé ici pour clarifier les concepts, est très utile en cas de
dépendances cycliques entre données : A utilise des (pointeurs sur des) Bs lesquels utilisent des
(pointeurs sur des) As.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 12 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Pourquoi les listes dynamiques?

Les tableaux sont un type de données très utile en programmation
mais présentent 2 limitations :

1. les données sont contiguës (les unes derrières les autres)
et donc l’insertion d’un nouvel élément au milieu du tableau demande la recopie
(le décalage) de tous les éléments suivants.
=⇒ insertion en O(n)

2. augmenter la taille (lorsqu’elle n’est pas fixée) peut nécessiter la création d’un
nouveau tableau
=⇒ O(n)

Programmation Orientée Objet – S.D.A. et Bibliothèques – 13 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Complexité optimale des opérations élémentaires

Liste tableau
accès à un élément précis : O(n) O(1)

insérer un élément
(quand on connait sa place !) : O(1) O(n)

supprimer un élément : O(1) O(n)

parcourir la S.D.A. : O(n) O(n)

calculer la longueur : O(n) O(n)
(voire O(1) si le stockage de cette valeur est effectué, en particulier si
« longueur » a été spécifiée dans les « services » de la SDA.
C’est par exemple le cas pour le vector et les array où size() est O(1).
Ce n’est pas forcément le cas pour list ou forward_list car avoir
size() en O(1) peut avoir d’autres conséquences ; et ce ne serait en
tout cas plus une liste chaînée telle que décrite dans ce cours !)

Programmation Orientée Objet – S.D.A. et Bibliothèques – 14 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Listes chaînées en C++
Les listes (simplement) chainées existent depuis dans la bibliothèque
forward_list.

Note : Les listes doublement chainées existent depuis C++98 : list

(quelques) méthodes des listes chaînées :
Type& front() retourne le premier élément de la liste
void push_front(Type) ajoute un élément en tête de liste
void pop_front() supprime le premier élément
void insert_after(iterator, Type) insertion après un élément de

la liste désigné par un itérateur

Exemple : #include <forward_list>

forward_list<int> ma_liste({ 6, 1, 5, -23, 3 });

for (auto element : ma_liste) {
cout << element << endl;

}

ma_liste.push_front(877);

Programmation Orientée Objet – S.D.A. et Bibliothèques – 15 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Piles

Spécification :
Une pile est une structure de données abstraite dynamique à 1 point d’accès,
contenant des éléments homogènes, et permettant :
▶ d’ajouter une valeur à la pile (empiler ou push) ;
▶ de lire la dernière valeur ajoutée ;
▶ d’enlever la dernière valeur ajoutée (dépiler ou pop) ;
▶ de tester si la pile est vide.

On ne « connaît » donc de la pile que le dernier élément empilé (son sommet).

Exemples concrets :
▶ une pile d’assiettes
▶ une tour dans le jeu des tours de Hanoï

Programmation Orientée Objet – S.D.A. et Bibliothèques – 16 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Piles : exemple d’utilisation

empiler x x

empiler a
a
x

dépiler x

empiler b
b
x

empiler y
y
b
x

dépiler
b
x

Programmation Orientée Objet – S.D.A. et Bibliothèques – 17 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Exemples d’utilisation des piles
Le problème des parenthèses : étant donnée une expression avec des parenthèses,
est-elle bien ou mal parenthésée?

((a+b)×c− (d +4)× (5+(a+c)))× (c+(d +(e+5×g)× f )×a)
(correct)

(a+b)(
(incorrect)

Encore un peu plus complexe : différentes parenthèses
Exemple avec [ et (

([])[()(()[])] ☞ correct
([)] ☞ incorrect

Autres exemples d’utilisation des piles (non traités ici) :
▶ tours de Hanoï
▶ notation postfixée (ou « polonaise inverse ») :

4 2 + 5×
(☞ 5× (4+2))

Programmation Orientée Objet – S.D.A. et Bibliothèques – 18 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Vérification de parenthésage

Tant que lire caractère c
Si c est ( ou [
empiler c

Sinon
Si c est ) ou ]
Si pile vide
ÉCHEC

Sinon
c′← lire la pile
Si c et c′ correspondent
dépiler

Sinon
ÉCHEC

Si pile vide
OK

Sinon
ÉCHEC

Exemple

Entrée : ([)]

empile ( (

empile [
[
(

lu = ), top = [
→ ne correspond pas
=⇒ ERREUR

Programmation Orientée Objet – S.D.A. et Bibliothèques – 19 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Deuxième Exemple
Entrée : ([()])

empile ( (

empile [
[
(

empile (
(
[
(

lu )→ correspond =⇒ dépile
[
(

lu ]→ correspond =⇒ dépile (

lu )→ correspond =⇒ dépile

pile vide =⇒ OK
Programmation Orientée Objet – S.D.A. et Bibliothèques – 20 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Piles (et files) en C++

Pour utiliser les piles en C++ : #include <stack>

Les files d’attente sont des piles où c’est le premier arrivé (empilé) qui est dépilé le
premier. Elles sont définies dans la bibliothèque <queue>.

Une pile de type type se déclare par stack<type> et une file d’attente par
queue<type>. Par exemple :

stack<double> une_pile;
queue<char> attente;

Méthodes : Type top() accède au premier élément (sans l’enlever)
void push(Type) empile/ajoute
void pop() dépile/supprime
bool empty() teste si la pile/file est vide

Programmation Orientée Objet – S.D.A. et Bibliothèques – 21 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Code C++ de l’exemple
#include <stack>

bool check(string const& s) {
stack<char> p;
for (auto const& c : s) {

if ((c == '(') or (c == '['))
p.push(c);

else if (c == ')') {
if ((not p.empty()) and (p.top() == '('))

p.pop();
else

return false;
} else if (c == ']') {

if ((not p.empty()) and (p.top() == '['))
p.pop();

else
return false;

}
}
return p.empty();

}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 22 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Bibliothèque standard

La bibliothèque standard (d’outils) C++ facilite la programmation et permet de la
rendre plus efficace, si tant est que l’on connaisse bien les outils qu’elle fournit.

Cette bibliothèque est cependant vaste et complexe, mais elle peut dans la plupart des
cas s’utiliser de façon très simple, facilitant ainsi la réutilisation des structures de
données abstraites et des algorithmes sophistiqués qu’elle contient.

La bibliothèque standard C++23 est formée de 105 « paquets » :
▶ 32 « d’origine » (C++89)
▶ 52 « nouveaux » : 19 de C++11, 1 de C++14, 8 de C++17, 15 de C++20

et 9 de C++23
▶ et 21 bibliothèques du C

Programmation Orientée Objet – S.D.A. et Bibliothèques – 23 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard

La bibliothèque standard C++ contient 32 « paquets » du C++ d’origine :

<algorithm> plusieurs algorithmes utiles
<bitset> gestions d’ensembles de bits
<complex> les nombres complexes
<deque> tableaux dynamiques avec push_front
<exception> diverses fonctions aidant à la gestion des exceptions
<fstream> manipulation de fichiers
<functional> objets fonctions
<iomanip> manipulation de l’état des flots
<ios> définitions de base des flots
<iosfwd> anticipation de certaines déclarations de flots
<iostream> flots standards
<istream> flots d’entrée
<iterator> itérateurs
<limits> diverses bornes concernant les types numériques
<list> listes doublement chaînées
<locale> contrôles liés au choix de la langue

Programmation Orientée Objet – S.D.A. et Bibliothèques – 24 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (2)

<map> tables associatives clé–valeur ordonnées
<memory> gestion mémoire pour les containers
<new> gestion mémoire
<numeric> fonctions numériques
<ostream> flots de sortie
<queue> files d’attente
<set> ensembles ordonnés
<sstream> flots dans des chaînes de caractères
<stack> piles
<stdexcept> gestion des exceptions
<streambuf> flots avec tampon (buffer)
<string> chaînes de caractères
<typeinfo> information sur les types
<utility> divers utilitaires
<valarray> tableaux orientés vers les valeurs
<vector> tableaux dynamiques

Programmation Orientée Objet – S.D.A. et Bibliothèques – 25 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (3)
19 « paquets » de :
<array> tableaux de taille fixe
<atomic> expression atomique
<chrono> heures et chronomètres
<condition_variable> concurence (multi-thread)
<forward_list> listes simplement chaînées
<future> concurence (multi-thread)
<initializer_list> listes d’initialisation
<mutex> concurence (multi-thread)
<random> nombres aléatoires
<ratio> constantes rationnelles (Q)
<regex> expressions régulières
<scoped_allocator> allocation mémoire
<system_error> erreurs système
<thread> concurence (multi-thread)
<tuple> n-uples
<type_traits> caractéristiques de types
<typeindex> utiliser les types comme index de containers
<unordered_map> tables associatives non ordonnées
<unordered_set> ensembles non ordonnés

Programmation Orientée Objet – S.D.A. et Bibliothèques – 26 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (4)

1 « paquet » de C++14 :

<shared_mutex> programmation concurrente

8 « paquets » de C++17 :

<any> « fourre-tout » (une valeur de n’importe quel type)
<charconv> conversion de séquence de caractères en valeur numérique
<execution> programmation parallèle
<filesystem> gestion du système de fichiers
<memory_resource> gestion mémoire polymorphique
<optional> valeur possiblement absente
<string_view> « vues » sur des chaînes de caractères
<variant> « fourre-tout » parmi des types choisis

Programmation Orientée Objet – S.D.A. et Bibliothèques – 27 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (5)

15 « paquets » de C++20 :

<barrier> « barrières » (pour les threads)
<bit> manipulation de bits
<compare> « 3-way comparison » et ordres (mathématiques)
<concepts> « equationnal reasoning » (propriétés syntaxiques et sémantiques)
<coroutine> co-routines (fonctions en attente)
<format> formater plus facilement du texte
<latch> « verrous » (pour les threads)
<numbers> diverses constantes
<ranges> « intervalles » d’itérateurs
<semaphore> « sémaphores » (pour les threads)
<source_location> informations sur le code source
<span> non-owning view over a contiguous sequence of objects
<stop_token> pour stopper les threads
<syncstream> sorties (flots) synchrones
<version> informations sur les outils disponibles

Programmation Orientée Objet – S.D.A. et Bibliothèques – 28 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (6)

9 « paquets » de C++23 :

<expected> valeur ou erreur
<flat_map> table associative dont les éléments sont contigüs en mémoire
<flat_set> ensemble dont les éléments sont contigüs en mémoire
<generator> generateurs de séquences de valeurs
<mdspan> « vue » sur tableaux multidimensionnels
<print> affichages formatés
<spanstream> entrées/sorties avec tampon de taille fixe
<stacktrace> pile des appels
<stdfloat> nombres à virgule flotante de taille (nb bits) fixée

Programmation Orientée Objet – S.D.A. et Bibliothèques – 29 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (7)
Il existe aussi dans les outils standards les 21 « paquets» venant du langage C :

<cassert> test d’invariants lors de l’exécution
<cctype> diverses informations sur les caractères
<cerrno> code d’erreurs retournés dans la bibliothèque standard
<cfenv> manipulation des règles de gestion des nombres en virgule flottante
<cfloat> diverses informations sur la représentation des réels
<cinttypes> int de taille fixée (C99)
<climits> diverses informations sur la représentation des entiers
<clocale> adaptation à diverses langues
<cmath> diverses définitions mathématiques
<csetjmp> branchement non locaux
<csignal> contrôle des signaux (processus)
<cstdarg> nombre variable d’arguments
<cstddef> diverses définitions utiles (types et macros)
<cstdio> entrées sorties de base
<cstdint> sous-partie de cinttypes
<cstdlib> diverses opérations de base utiles
<cstring> manipulation des chaînes de caractères à la C

Programmation Orientée Objet – S.D.A. et Bibliothèques – 30 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Contenu de la bibliothèque standard (7)
<ctime> diverses conversions de date et heures
<cuchar> char de 16 ou 32 bits
<cwchar> utilisation des caractères étendus
<cwctype> classification des codes de caractères étendus

Programmation Orientée Objet – S.D.A. et Bibliothèques – 31 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Outils standards

On distingue plusieurs types d’outils.

Parmi les principaux :
▶ les containers de base
▶ les containers avancés (appelés aussi « adaptateurs »)
▶ les itérateurs
▶ les algorithmes
▶ les outils numériques
▶ les traitements d’erreurs
▶ les chaînes de caractères
▶ les flots

Programmation Orientée Objet – S.D.A. et Bibliothèques – 32 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Outils standards (2)

Les outils les plus utilisés par les débutants sont :
▶ les chaînes de caractères (string) ✔

▶ les flots (stream) ✔

▶ les tableaux dynamiques (vector) [container] ✔

▶ les listes chaînées (list) [container avancé] ✔

▶ les piles (stack) [container avancé] ✔

▶ les algorithmes de tris (sort())
▶ les algorithmes de recherche (find())
▶ les itérateurs (iterators)

Programmation Orientée Objet – S.D.A. et Bibliothèques – 33 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Plan

Présentons maintenant certains des outils standards de façon plus détaillée :
▶ set/unordered_set [container]

▶ iterator
▶ map/unordered_map [container]

▶ sort
▶ find
▶ complex
▶ cmath
▶ random

Programmation Orientée Objet – S.D.A. et Bibliothèques – 34 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Containers

Comme le nom l’indique, les containers sont des structures de données abstraites
servant à contenir (« collectionner ») d’autres objets.

Vous en connaissez déjà plusieurs : tableaux, listes chaînées, piles et files d’attentes.

Il en existe plusieurs autres, parmi lesquels les ensembles (set, unordered_set) et les
tables associatives (map, unordered_map).

Les set permettent de gérer des ensembles au sens mathématique du terme (finis et
ordonnés) : collection d’éléments où chaque élément n’est présent qu’une seule fois.

Les tables associatives sont une généralisation des tableaux où les indexes ne sont
pas forcément des entiers.

Imaginez par exemple un tableau que l’on pourrait indexer par des chaînes de
caractères et écrire par exemple tab["Informatique"]

Programmation Orientée Objet – S.D.A. et Bibliothèques – 35 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Containers (2)

(Presque) Tous les containers contiennent les méthodes suivantes :

bool empty() : le containers est-il vide?

size_t size() : nombre d’éléments contenus dans le container
(sauf forward_list)

void clear() : vide le container
(sauf array, stack, queue et priority_queue)

iterator erase(it) : supprime du container l’élément pointé par it. it est un
itérateur (généralisation de la notion de pointeur, voir quelques transparents plus loin)
(sauf forward_list, array, stack, queue et priority_queue)

Ils possèdent également tous (sauf stack, queue et priority_queue) les méthodes
begin(), cbegin(), end() et cend() que nous verrons avec les itérateurs.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 36 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Tableaux dynamiques : petit complément
Pour accéder directement à un élément d’un tableau dynamique (vector) on utilise
l’opérateur [] : tab[i].

Il existe une autre méthode pour cet accès : at(n) qui, à la différence de [n], lance
l’exception out_of_range (de la bibliothèque <stdexcept>) si n n’est pas un index
correct.

Exemple : #include <vector>
#include <stdexcept>
...
vector<int> v(5,3); // 3, 3, 3, 3, 3
int n(12);
try {

cout << v.at(n) << endl;
}
catch (out_of_range) {

cerr << "Erreur : " << n << " n'est pas correct pour v"
<< endl
<< "qui ne contient que " << v.size() << " éléments."
<< endl;

}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 37 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Ensembles
Les ensembles (au sens mathématique) sont implémentés dans la bibliothèque <set>.
Ils contiennent des éléments d’un même type, ordonnés par operator<.
(Pour des éléments (d’un même type) non ordonnés, c.-à-d. sans operator<, on utilisera un
unordered_set.)

On déclare un ensemble comme les autres containers, en spécifiant le type de ses
éléments, par exemple :

set<char> monensemble;

Les ensembles sont une SDA non-indexée : l’accès direct à un élément n’est pas
possible.

(quelques) méthodes des ensembles :

insert(Type) insère un élément s’il n’y est pas déjà
erase(Type) supprime l’élément (s’il y est)
find(Type) retourne un itérateur indiquant l’élément

recherché

À noter que la bibliothèque <algorithm> fournit des fonctions pour faire la réunion,
l’intersection et la différence d’ensembles.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 38 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Ensembles – Exemple

#include <set>
...
set<char> voyelles;

voyelles.insert('a');
voyelles.insert('b');
voyelles.insert('e');
voyelles.insert('i');
voyelles.erase('b');
voyelles.insert('e'); // n'insere pas 'e' car il y est déjà

Comment parcourir cet ensemble?

for (size_t i(0); i < voyelles.size(); ++i)
cout << voyelles[i] << endl;

ne fonctionne pas car c’est une SDA non-indexée.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 39 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Ensembles – parcours

Comment parcourir cet ensemble?

Depuis c’est facile :

for (auto const v : voyelles) {
cout << v << endl;

}

Il y a aussi un autre moyen, plus avancé :

☞ utilisation d’itérateurs

Programmation Orientée Objet – S.D.A. et Bibliothèques – 40 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Itérateurs

Les itérateurs sont une SDA généralisant aux containers
d’une part les accès par index et d’autre part les pointeurs.

Ils permettent :
▶ de parcourir de façon itérative les containers
▶ d’indiquer (c.-à-d. de pointer sur) un élément d’un container

Il existe en fait 7 sortes d’itérateurs, mais nous ne parlons ici que de la plus générale,
qui permet de tout faire : lecture et écriture du container, aller en avant ou en arrière
(accès quelconque en fait).

Programmation Orientée Objet – S.D.A. et Bibliothèques – 41 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Itérateurs (2)
Un itérateur associé à un container C<type> se déclare simplement comme

C<type>::iterator nom;
ou C<type>::const_iterator nom;
si l’on ne modifie pas le container lors du parcours.

Exemples :
vector<double>::iterator i;
set<char>::const_iterator j; // en lecture seule

Il peut s’initialiser grâce aux méthodes begin(), cbegin(), end() ou cend() du
container, voire d’autres méthodes spécifiques, comme par exemple find() pour les
containers non-séquentiels.

Exemples :
vector<double>::iterator i(monvect.begin());
set<char>::const_iterator j(monset.find(monelement));

L’élément indiqué par l’itérateur i est simplement *i, comme pour les pointeurs.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 42 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Retour sur l’exemple des ensembles

Pour parcourir notre ensemble précédent, nous pouvons donc faire :

for (set<char>::const_iterator i(voyelles.cbegin());
i != voyelles.cend(); ++i) {

cout << *i << endl;
}

Exemple d’utilisation de find() :

set<char>::const_iterator i(voyelles.find('c'));
if (i == voyelles.cend()) {

cout << "pas trouvé" << endl;
} else {

cout << *i << " trouvé" << endl;
}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 43 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Code complet de l’exemple
#include <set>
#include <iterator>
#include <iostream>
using namespace std;

int main() {
set<char> voyelles;

voyelles.insert('a');
voyelles.insert('b');
voyelles.insert('e');
voyelles.insert('i');
voyelles.insert('a'); // ne fait rien car 'a' y est déjà
voyelles.erase('b'); // supprime 'b'

// parcourt l'ensemble
for (auto const v : voyelles) cout << v << endl;

// recherche d'un élément
set<char>::const_iterator element(voyelles.find('c'));
if (element == voyelles.cend())

cout << "je n'ai pas trouvé." << endl;
else

cout << *element << " trouvé !" << endl;

return 0;
}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 44 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Suppression d’un élément d’un container
On a vu que tout container possédait une méthode

iterator erase(it)

permettant de supprimer un élément, mais...

Attention ! On ne peut pas continuer à utiliser l’itérateur it !
(plus exactement : erase rend invalide tout itérateur et référence situé(e) au dela du premier
point de suppression)

Exemple d’erreur classique : ceci n’est pas correct («Segmentation fault») :

vector<double> v;
...
for (vector<double>::iterator i(v.begin()); i != v.end(); ++i)

if (cond(*i)) v.erase(i);

(avec bool cond(double);)

pas plus que :

for (vector<double>::iterator i(v.begin()); i != v.end(); ++i)
if (cond(*i)) i = v.erase(i);

Programmation Orientée Objet – S.D.A. et Bibliothèques – 45 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Suppression d’un élément d’un container (2)
Ce qu’il faut faire c’est :

vector<double>::iterator next;
for (vector<double>::iterator i(v.begin()); i != v.end(); i = next) {

if (cond(*i)) { next = v.erase(i); }
else { next = i + 1; }

}

ou mieux en utilisant remove_if (ou remove) de <algorithm> :
v.erase(remove_if(v.begin(), v.end(), cond), v.end());

mais qui sont de toutes façons «coûteux» (O(v.size()2))

En effet, un tableau dynamique n’est pas la bonne SDA si l’on veut détruire un élément au
milieu et garder l’ordre (☞ listes chaînées)

Note : si l’on ne tient pas à garder l’ordre, on peut toujours faire :

for (size_t i(0); i < v.size(); ++i)
if (cond(v[i])) {

swap(v[i], v.back());
v.pop_back();
--i;

} Programmation Orientée Objet – S.D.A. et Bibliothèques – 46 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Tables associatives
Les tables associatives sont une généralisation des tableaux où les indexes ne sont
pas forcément des entiers.

Imaginez par exemple un tableau que l’on pourrait indexer par des chaînes de
caractères et écrire par exemple tab["Informatique"]

On parle d’« associations clé–valeur »

Les tables associatives sont définies dans la bibliothèque <map>.

Elles nécessitent deux types pour leur déclaration :
le type des « clés » (les indexes) et le type des éléments indexé.

Par exemple, pour indexer des nombres réels par des chaînes de caractères on
déclarera :

map<string,double> une_variable;

Si l’ordre (operator<) des clés n’importe pas, on utilisera une unordered_map.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 47 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Tables associatives – exemple – VERSION C++98
#include <map>
#include <string>
#include <iostream>
using namespace std;

int main() {
map<string,double> moyenne;

moyenne["Informatique"] = 5.5;
moyenne["Physique"] = 4.5;
moyenne["Histoire des maths"] = 2.5;
moyenne["Analyse"] = 4.0;
moyenne["Algèbre"] = 5.5;

// parcours de tous les éléments
for (map<string,double>::iterator i(moyenne.begin());

i != moyenne.end(); ++i) {
cout << "En " << i->first << ", j'ai " << i->second

<< " de moyenne." << endl ;
}

// recherche
const map<string,double>& m = moyenne; // pour forcer le const
cout << "Ma moyenne en Informatique est de ";

/* cout << m["Informatique"] << endl; // ne compile pas parce que m[] est non const :
// il insère si l'élément n'est pas présent. */

cout << m.find("Informatique")->second << endl;

return 0;
}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 48 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Tables associatives – exemple VERSION C++11
#include <map>
#include <string>
#include <iostream>
using namespace std;

int main() {
map<string,double> moyenne;

moyenne["Informatique"] = 5.5;
moyenne["Physique"] = 4.5;
moyenne["Histoire des maths"] = 2.5;
moyenne["Analyse"] = 4.0;
moyenne["Algèbre"] = 5.5;

// parcours de tous les éléments
for (auto i : moyenne) {

cout << "En " << i.first << ", j'ai " << i.second
<< " de moyenne." << endl ;

}

// recherche
const map<string,double>& m = moyenne;
cout << "Ma moyenne en Informatique est de "

<< m.at("Informatique") << endl;

return 0;
}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 49 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers
généralités

set
iterator
Exemple

erase
map

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Tables associatives – exemple VERSION C++17
#include <map>
#include <string_view>
#include <iostream>
using namespace std;

int main() {
map<string_view,double> moyenne;

moyenne["Informatique"] = 5.5;
moyenne["Physique"] = 4.5;
moyenne["Histoire des maths"] = 2.5;
moyenne["Analyse"] = 4.0;
moyenne["Algèbre"] = 5.5;

// parcours de tous les éléments
for (auto&& [ cours, note ] : moyenne) {

cout << "En " << cours << ", j'ai " << note
<< " de moyenne." << endl ;

}

// recherche
const map<string_view,double>& m = moyenne;
cout << "Ma moyenne en Informatique est de "

<< m.at("Informatique") << endl;

return 0;
}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 50 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Algorithmes
La bibliothèque algorithm (c.-à-d. #include <algorithm>) fournit l’implémentation
d’un grand nombre d’algorithmes généraux :
▶ de séquencement

quelques exemples : for_each, find, copy
▶ de tris

sort, mais aussi bien d’autres
▶ numériques

inner_product, partial_sum, adjacent_difference
▶ ...

3 exemples ici :
▶ find
▶ copy et les output_iterators
▶ sort

pour les autres : référez-vous à la documentation

Programmation Orientée Objet – S.D.A. et Bibliothèques – 51 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

find()
find() implémente un algorithme général permettant de faire des recherches dans
(une partie d’)un container.
Son prototype général est :

iterator find(iterator debut, iterator fin, Type valeur);
qui cherche valeur entre debut (inclu) et fin (exclu). Elle retourne un itérateur sur le
contenu correspondant à la valeur recherchée ou fin si cette valeur n’est pas trouvée.

Exemple :

list<int> uneliste;

uneliste.push_back(3);
uneliste.push_back(1);
uneliste.push_back(7);

list<int>::iterator result(find(uneliste.begin(), uneliste.end(), 7));

if (result != uneliste.end()) cout << "trouvé";
else cout << "pas trouvé";
cout << endl;

Programmation Orientée Objet – S.D.A. et Bibliothèques – 52 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

copy()
copy() implémente un algorithme général pour copier (une partir d’)un container dans
un autre.

Son prototype général est :
OutputIterator copy(InputIterator debut, InputIterator fin,

OutputIterator resultat);

qui copie le contenu compris entre debut (inclus) et fin (exclus) vers resultat (inclus)
et les positions suivantes (itérateurs).

La valeur de retour est resultat + (fin - debut).

Attention ! Notez bien que cela copie des éléments, mais ne fait pas d’insertion :
il faut absolument que resultat ait (c.-à-d. pointe sur) la place nécessaire !

Exemple :
copy(unensemble.begin(), unensemble.end(), untableau.begin());

Notez que l’on peut ainsi copier des données d’une SDA dans une autre SDA d’un autre type.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 53 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

copy() (2)

copy() peut être très utile pour afficher le contenu d’un container sur un flot en utilisant
un ostream_iterator (je ne donne qu’un exemple ici :)

copy(container.begin(), container.end(),
ostream_iterator<int>(cout, ", "));

container contenant ici des int.
Son contenu sera affiché sur cout, séparé par des « , ».

Programmation Orientée Objet – S.D.A. et Bibliothèques – 54 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

copy() – Exemple complet
#include <iostream>
#include <set>
#include <vector>
#include <iterator>
using namespace std;

int main() {
set<double> unensemble, unautre;

unensemble.insert(1.1); unensemble.insert(2.2);
unensemble.insert(3.3);

// copy(unensemble.begin(), unensemble.end(), unautre.begin());
// ne fonctionnerait pas ("assignment of read-only location")
// car, ici, unautre n'a pas la taille suffisante.

vector<double> untableau(unensemble.size()); // prévoit la place

copy(unensemble.begin(), unensemble.end(), untableau.begin());

// output
cout << "untableau = ";
copy(untableau.begin(), untableau.end(),

ostream_iterator<double>(cout, ", "));
cout << endl;
return 0;

}
Programmation Orientée Objet – S.D.A. et Bibliothèques – 55 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

sort()
sort() permet de trier des SDA implémentées sous forme de containers

La version la plus simple de tri est (il y en a d’autres) :
void sort(iterator debut, iterator fin)

qui utilise operator< des éléments contenus dans la partie du container indiquée par
debut et fin
(les objets qui y sont stockés doivent donc posséder cet opérateur)

Exemple :

list<double> uneliste;
...
sort(uneliste.begin(), uneliste.end());

Exemple plus avancé (qui affiche « 1 2 4 5 7 8 ») :

constexpr size_t N(6);
int montableau[N] = { 1, 4, 2, 8, 5, 7 };
sort(montableau, montableau + N);
copy(montableau, montableau + N, ostream_iterator<int>(cout, " "));
cout << endl;

Programmation Orientée Objet – S.D.A. et Bibliothèques – 56 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Nombres Complexes

La bibliothèque <complex> définit les nombres complexes.

Ils se déclarent par complex<double>. Ils possèdent un constructeur à 2 paramètres
permettant de préciser les parties réelle et imaginaire, p.ex.

complex<double> c(3.2,1.4), i(0,1);

Par contre, il n’existe pas de constructeur permettant de créer un nombre complexe à
partir de ses coordonnées polaires.

En revanche, la fonction polar, qui prend comme paramètres la norme et l’argument
du complexe à construire, permet de le faire. Cette fonction renvoie le nombre
complexe nouvellement construit :

c = polar(sqrt(3.0), M_PI / 12.0);

Les méthodes des nombres complexes sont real() qui retourne la partie réelle,
imag() qui retourne la partie imaginaire, et bien sûr les operateurs usuels.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 57 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Nombres Complexes (2)

Ce qui est plus inattendu c’est que les opérations de norme, argument, et conjugaison
n’ont pas été implémentées sous forme de méthodes, mais de fonctions :

double abs(const complex<double>&) retourne la norme (au
sens français du terme) du
nombre complexe

double norm(const complex<double>&) retourne le carré de la
norme

double arg(const complex<double>&) retourne l’argument du
nombre complexe

complex<double> conj(const complex<double>&)
retourne le complexe conjugué

La bibliothèque fournit de plus les extensions des fonctions de base (trigonométriques,
logarithmes, exponentielle) aux nombres complexes.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 58 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Détails de <cmath>
Quelques fonctions définies dans la bibliothèque <cmath> :
abs valeur absolue
acos arccos
asin arcsin
atan arctan
ceil ⌈x⌉, entier supérieur
cos cos
cosh cosinus hyperbolique
exp exp
floor ⌊x⌋, entier inférieur
log ln, logarithme népérien
log10 log, logarithme en base 10
pow(x,y) xy = exp(y lnx) — (préférez la multiplication pour les faibles puissances entières)
sin sin
sinh sinus hyperbolique
sqrt √

tan tan
tanh tangente hyperbolique

Programmation Orientée Objet – S.D.A. et Bibliothèques – 59 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Détails de <cmath> (2)
Quelques constantes :

non ISO, mais souvent disponible avec depuis C++20, avec :
#define _USE_MATH_DEFINES #include <numbers>

(avant les #include) using namespace std::numbers;

π M_PI pi

e M_E e√
2 M_SQRT2 sqrt2

ln(2) M_LN2 ln2

ln(10) M_LN10 ln10

log2(e) M_LOG2E log2e
1
π

M_1_PI inv_pi√
3 — sqrt3

... (et encore plein d’autres)

Programmation Orientée Objet – S.D.A. et Bibliothèques – 60 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Nombres aléatoires

La génération de nombres au hasard sur ordinateur se fait avec des générateurs dit
« pseudo-aléatoires » qui pour une valeur initiale donnée (appelée « graine »
[« seed » en anglais]) donnent toujours la même séquence « aléatoire » (suivant une
distribution de probabilités choisie).

Utiliser la même graine peut être utile pour déverminer un programme utilisant des
nombres aléatoires.

Pour avoir une série de nombres aléatoires différente à chaque utilisation du
programme, il faut utiliser une graine différente à chaque fois.

[Même si ce n’est pas terrible,] Cela se fait souvent en utilisant comme graine la valeur de
l’horloge de l’ordinateur à cet instant.

Une autre solution consiste à tirer la graine (voire la séquence elle-même) depuis un
périphérique matériel suffisement aléatoire (« random device ») :
(micro-)déplacement de la souris, température du processeur, ...

Programmation Orientée Objet – S.D.A. et Bibliothèques – 61 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Nombres aléatoires (2)

Dans la bibliothèque <random> ( ), il existe différents générateurs de nombres
pseudo-aléatoires et différentes distributions de probabilités.

Les deux doivent être combinés pour pouvoir effectuer une série de tirage.

Ci-après un exemple simple pour tirer de façon uniforme un nombre aléatoire entier
entre min et max.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 62 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Nombres aléatoires : exemple
#include <iostream>
#include <functional> // pour bind()
#include <random>
using namespace std;

int main()
{

// par exemple (dé ?)
constexpr int min(1), max(6);

// distribution uniforme entre min et max
uniform_int_distribution<int> distribution(min, max);

random_device rd; // utilisé ici pour la graine
unsigned int graine(rd()); // par exemple, ou sinon de votre choix

// choix du générateur et initialisation (graine)
default_random_engine generateur(graine);

auto tirage(bind(distribution, generateur)); // ésotérisme

for (unsigned int i(1); i <= 10; ++i) { // 10 tirages
cout << tirage() << endl;

}
return 0;

}

Programmation Orientée Objet – S.D.A. et Bibliothèques – 63 / 64



Objectifs

S.D.A.

Listes

Piles

Bibliothèque
standard

Containers

Algorithmes et
maths

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Ce que j’ai appris

▶ Les bases de la formalisation des données : les structures de données
abstraites

▶ Les deux structures de données abstraites les plus utilisées en informatique (en
plus des tableaux et des types élémentaires) :
les listes chaînées et les piles

▶ Qu’il existe beaucoup d’outils prédéfinis dans la bibliothèque standard de C++

Le but n’est évidemment pas de les connaître tous par cœur, mais de
savoir qu’ils existent pour penser aller chercher dans la documentation
les informations complémentaires.

Programmation Orientée Objet – S.D.A. et Bibliothèques – 64 / 64


	Objectifs
	S.D.A.
	Listes
	Piles
	Bibliothèque standard
	Containers
	généralités
	set
	iterator
	Exemple
	erase
	map

	Algorithmes et maths
	Conclusion

