
Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Programmation Orientée Objet :

Templates : les classes et fonctions génériques

Jean-Cédric Chappelier

Faculté I&C

Programmation Orientée Objet – Modèles Génériques – 1 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Objectifs du cours d’aujourd’hui

Le but de ce cours est de présenter les modèles de classes et de fonctions,
basés sur le concept de programmation générique (« generic programming »).

On parle aussi pour cela de polymorphisme paramétrique.

Note : Ce cours est un cours avancé dont le contenu ne fera pas partie des examens.

Programmation Orientée Objet – Modèles Génériques – 2 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Un exemple

Prenons un exemple simple pour commencer :
une fonction échangeant la valeur de 2 variables.

Par exemple avec 2 entiers vous écririez une fonction comme :

// échange la valeur de ses arguments
void echange(int& i, int& j) {

int tmp(i);
i = j;
j = tmp;

}

Mais vous vous rendez bien compte que vous pourriez faire la même chose (le même
algorithme) avec deux double, ou même deux objets quelconques, pour peu qu’ils
aient un constructeur de copie (Obj tmp(i);) et un opérateur de copie (operator=).

Programmation Orientée Objet – Modèles Génériques – 3 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Exemple, suite...
L’écriture générale serait alors quelque chose comme :

// échange la valeur de ses arguments
void echange(Type& i, Type& j) {

Type tmp(i);
i = j;
j = tmp;

}

où Type est une représentation générique du type des objets à échanger.

La façon exacte de le faire en C++ est la suivante :

// échange la valeur de ses arguments
template<typename Type>
void echange(Type& i, Type& j) {

Type tmp(i);
i = j;
j = tmp;

}

Programmation Orientée Objet – Modèles Génériques – 4 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

...et fin
On pourra alors utiliser la fonction echange avec tout type/classe pour lequel le
constructeur de copie et l’opérateur d’affectation (=) sont définis.

Par exemple :

int a(2), b(4);
echange(a, b);

double da(2.3), db(4.5);
echange(da, db);

vector<double> va, vb;
...
echange(va, vb);

string sa("ca marche"), sb("coucou");
echange(sa, sb);

Note : Un tel modèle de fonctions existe dans la bibliothèque algorithm et s’appelle swap.

Programmation Orientée Objet – Modèles Génériques – 5 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Programmation générique

L’idée de base est de passer les types de données comme paramètres
pour décrire des traitements très généraux (« génériques »)
Il s’agit donc d’un niveau d’abstraction supplémentaire.

De tels modèles de classes/fonctions s’appellent aussi classes/fonctions génériques
ou patrons (chablons), ou encore « template ».

Vous en connaissez déjà sans le savoir.
Par exemple la « classe » vector n’est en fait pas une classe, mais un modèle de
classes :
c’est le même modèle que l’on stocke des char (vector<char>),
des int (vector<int>), ou tout autre objet (p.ex. vector<Figure*>).

Programmation Orientée Objet – Modèles Génériques – 6 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Modèle de classes

Ce que l’on a fait dans l’exemple introductif avec des fonctions (echange()) peut aussi
être fait avec des classes.

On pourrait par exemple vouloir créer un modèle de classes qui réalise une paire
d’objets quelconques :

template<typename T1, typename T2>
class Paire {
public:

Paire(const T1& un, const T2& deux)
: premier(un), second(deux) {}

T1 get1() const { return premier; }
T2 get2() const { return second; }
void set1(const T1& val) { premier = val; }
void set2(const T2& val) { second = val; }

protected:
T1 premier;
T2 second;

};

Programmation Orientée Objet – Modèles Génériques – 7 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Généralisation aux classes (2)

et par exemple créer la classe « paire string–double » :
Paire<string,double>

ou encore la classe « paire char–unsigned int » :
Paire<char,unsigned int>

Note : un tel modèle de classes existe dans la bibliothèque utility et s’appelle pair.

Les modèles de classes sont donc un moyen condensé d’écrire plein de classes
potentielles à la fois.

(de même que les modèles de fonctions/méthodes sont un moyen condensé d’écrire
plein de fonctions/méthodes potentielles à la fois)

Programmation Orientée Objet – Modèles Génériques – 8 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Déclaration d’un modèle

Pour déclarer un modèle de classes ou de fonctions, il suffit de faire précéder
sa déclaration du mot clé template suivi de ses paramètres (qui sont donc des noms
génériques de type) suivant la syntaxe :

template<typename nom1, typename nom2, ...>

Exemple :

template<typename T1, typename T2>
class Paire {

...

Les types ainsi déclarés (paramètres du modèle) peuvent alors être utilisés dans la
définition qui suit, exactement comme tout autre type.

Note : on peut aussi utiliser le mot class à la place de typename, par exemple :

template<class T1, class T2>
class Paire {

...

Programmation Orientée Objet – Modèles Génériques – 9 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Déclaration d’un modèle (2)

Il est également possible de définir des types par défaut, avec la même contrainte que
pour les paramètres de fonction : les valeurs par défaut doivent être placées en dernier.

Exemple :

template<typename T1, typename T2 = unsigned int>
class Paire {

...

qui permettrait de déclarer la classe « paire char–unsigned int » simplement par :
Paire<char>

On peut même faire

template<typename T1, typename T2 = T1>
class Paire {

...

Programmation Orientée Objet – Modèles Génériques – 10 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Définitions externes des méthodes
de modèles de classes

Si les méthodes d’un modèle de classes sont définies en dehors de cette classe,
elle devront alors aussi être définies comme modèle et être précédées du mot clé
template, mais...

...il est de plus absolument nécessaire d’ajouter les paramètres du modèle
(les types génériques) au nom de la classe
[pour bien spécifier que dans cette définition c’est la classe qui est en modèle et non la méthode.]

Exemple : template<typename T1, typename T2>
class Paire {
public:

Paire(const T1&, const T2&);
...

};

// définition du constructeur
template<typename T1, typename T2>
Paire<T1,T2>::Paire(const T1& un, const T2& deux)

: premier(un), second(deux) { }

Programmation Orientée Objet – Modèles Génériques – 11 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Instanciation des modèles
La définition des modèles ne génère en elle-même aucun code : c’est juste une
description de plein de codes potentiels.

Le code n’est produit que lorsque tous les paramètres du modèle ont pris chacun un
type spécifique.

Lors de l’utilisation d’un modèle, il faut donc fournir des valeurs pour tous les
paramètres (au moins ceux qui n’ont pas de valeur par défaut).
On appelle cette opération une instanciation du modèle.

L’instanciation peut être implicite lorsque le contexte permet au compilateur de décider
de l’instance de modèle à choisir.

Par exemple, dans le code :

double da(2.3), db(4.5);
echange(da, db);

il est clair (par le contexte) qu’il s’agit de l’instance echange<double> du modèle
template<typename T> void echange(T&,T&); qu’il faut utiliser.

Programmation Orientée Objet – Modèles Génériques – 12 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Instanciation des modèles (2)
Mais dans la plupart des cas, on explicite l’instanciation
lors de la déclaration d’un objet.
C’est ce qui vous faites lorsque vous déclarez par exemple vector<double> tableau;

Il suffit dans ce cas de spécifier le(s) type(s) désiré(s) après le nom du modèle de
classes et entre <>.

L’instanciation explicite peut aussi être utile dans les cas où le contexte n’est pas
suffisamment clair pour choisir.

Par exemple avec le modèle de fonctions

template <typename Type>
Type monmax(const Type& x, const Type& y)
{

if (x < y) return y;
else return x;

}

l’appel « monmax(3.14, 7); » est ambigu.

Il faudra alors écrire :
« monmax<double>(3.14, 7); »

Note C++17 : on peut aussi faire de l’instanciation implicite de modèle de classes :
vector tab(5, 1.0);

Programmation Orientée Objet – Modèles Génériques – 13 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Modèles, surcharge et spécialisation
Les modèles de fonctions peuvent très bien être surchargés comme les fonctions
usuelles (puisque, encore une fois, ce sont juste des façons condensées d’écrire plein
de fonctions à la fois).

Par exemple :
template<typename Type>
void affiche(const Type& t) {

cout << "J'affiche " << t << endl;
}

// surcharge pour les pointeurs : on préfère ici écrire
// le contenu plutôt que l'adresse.
template<typename Type>
void affiche(Type* t) {

cout << "J'affiche " << *t << endl;
}

Note : on aurait même pu faire mieux en faisant appel au premier modèle :

template<typename Type>
void affiche(Type* t) { affiche<Type>(*t); }

Programmation Orientée Objet – Modèles Génériques – 14 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Modèles, surcharge et spécialisation (2)

Mais les modèles (y compris les modèles de classes) offrent un mécanisme
supplémentaire : la spécialisation qui permet de définir une version particulière
d’une classe ou d’une fonction pour un choix spécifique des paramètres du modèle.

Par exemple, on pourrait spécialiser le second modèle ci-dessus dans le cas des
pointeurs sur des entiers :

template<> void affiche<int>(int* t) {
cout << "J'affiche le contenu d'un entier : " << *t

<< endl;
}

La spécialisation d’un modèle (lorsqu’elle est totale) se fait en :
▶ ajoutant template<> devant la définition
▶ nommant explicitement la classe/fonction spécifiée

C’est le <int> après affiche dans l’exemple ci-dessus.

Programmation Orientée Objet – Modèles Génériques – 15 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Exemple de spécialisation de classe
template<typename T1, typename T2>
class Paire {
...
};

// specialisation pour les paires <string,int>
template<> class Paire<string,int> {
public:

Paire(const string& un, int deux)
: premier(un), second(deux) {}

string get1() const { return premier; }
int get2() const { return second; }
void set1(const string& val) { premier = val; }
void set2(int val) { second = val; }

// une methode de plus
void add(int i) { second += i; }

protected:
string premier;
int second;

};

(Question : comment aurait-on
pu faire mieux?)

Programmation Orientée Objet – Modèles Génériques – 16 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Spécialisation : remarques
Note 1 : La spécialisation peut également s’appliquer uniquement à une méthode d’un

modèle de classes sans que l’on soit obligé de spécialiser toute la classe.
Utilisée de la sorte, la spécialisation peut s’avérer particulièrement utile.

Note 2 : La spécialisation n’est pas une surcharge car il n’y a pas génération de plusieurs
fonctions de même nom (de plus que signifie une surcharge dans le cas d’une
classe?) mais bien une instance spécifique du modèle.

Note 3 : Pour les classes (pas pour les fonctions), il existe aussi des spécialisations
partielles (de toute la classe ou de certaines méthodes), mais cela nous
emmènerait trop loin dans ce cours.

Note 4 : Pour les fonctions, préférez la surcharge à la spécialisation :

void affiche(int* t) {
cout << "J'affiche le contenu d'un entier : " << *t

<< endl;
}

Programmation Orientée Objet – Modèles Génériques – 17 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Modèles paramétrés par des entiers
En plus des modèles paramétrés par un type, on peut aussi écrire des modèles
paramétrés par des entiers, des valeurs enumérées, des pointeurs ou des
références.

Illustrons ici sur des modèles paramétrés par des entiers :

Exemple 1 : array<double, 3>

Exemple 2 : une classe représentant (le concept d’)un intervalle d’entiers :
entre N inclu et M exclu : [N,M[

template <int N, int M>
class IntRange
{
public:

int low() const { return min(N,M); }
int high() const { return max(N,M); }

bool contains(int x) const {
return (x >= low()) and (x < high());

}
};

Programmation Orientée Objet – Modèles Génériques – 18 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

suite de l’exemple
On pourrait même l’afficher :
template <int N, int M>
ostream& operator<<(ostream& flot, IntRange<N, M> const& r) {

return flot << '[' << r.low() << ", " << r.high() << '[';
}

et créer un itérateur sur cette classe (voir semaine prochaine) :

class IntRangeIterator {
public:

IntRangeIterator(int index) : index_(index) {}

bool operator==(const IntRangeIterator& x) const
{ return index_ == x.index_; }

bool operator!=(const IntRangeIterator& x) const
{ return not(*this == x); }

int operator*() const { return index_; }
IntRangeIterator& operator++() { ++index_; return *this; }

private: int index_; // se souvient où l'on est
};

Programmation Orientée Objet – Modèles Génériques – 19 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

suite de l’exemple (2)
template <int N, int M>
class IntRange
{
public:

typedef IntRangeIterator const_iterator;

const_iterator begin() const
{ return const_iterator(low()); }

const_iterator end() const
{ return const_iterator(high()); }

...
};

template <typename T>
void show_all(const T& t)
{

for (auto i : t) cout << i << ", ";
cout << "[END]" << endl;

}
...

show_all(IntRange<10, 20>());
...

Programmation Orientée Objet – Modèles Génériques – 20 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Modèles paramétrés par des entiers (2)
On peut bien sûr aussi :
▶ spécialiser ces modèles paramétrés par des entiers

template <int N>
class Factorial {

enum { value = N * Factorial<N - 1>::value };
};

template <>
class Factorial<0> {

enum { value = 1 };
};

▶ combiner des paramètres de types et entiers :

template <typename type, int N>
class MachinTruc {
...
protected:

array<type, N> contenu;
}

Programmation Orientée Objet – Modèles Génériques – 21 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Modèles de classes et
compilation séparée

Les modèles de classes doivent nécessairement être définis au moment de leur
instanciation afin que le compilateur puisse générer le code correspondant.

Ce qui implique, lors de compilation séparée, que les fichiers d’en-tête (.h) doivent
contenir non seulement la déclaration, mais également la définition complète de ces
modèles ! !

On ne peut donc pas séparer la déclaration de la définition dans différents fichiers...
Ce qui présente plusieurs inconvénients :
▶ les mêmes instances de modèles peuvent être compilées plusieurs fois ;
▶ et peuvent se retrouver en de multiples exemplaires dans les fichiers exécutables ;
▶ on ne peut plus cacher leurs définitions (p.ex. pour des raisons de confidentialité,

protection contre la concurrence, etc.).

Programmation Orientée Objet – Modèles Génériques – 22 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Templates

Déclarer un modèle de classe ou de fonction :
template<typename nom1, typename nom2, ...>

Définition externe des méthodes de modèles de classes : template<typename nom1,
typename nom2, ...> NomClasse <nom1, nom2, ...>::NomMethode(...

Instanciation : spécifier simplement les types voulus après le nom de la
classe/fonction, entre <> (Exemple : vector<double>)

Spécialisation (totale) de modèle pour les types type1, type2... : template<>
NomModele <type1,type2,...>
...suite de la declaration...

Compilation séparée : pour les templates, il faut tout mettre (déclarations et définitions)
dans le fichier d’en-tête (.h).

Programmation Orientée Objet – Modèles Génériques – 23 / 24

Objectifs

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Autres types de
templates

Compilation
séparée

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

Ce que j’ai appris aujourd’hui

À pouvoir faire des modèles génériques de fonctions ou de classes, indépendamment
du type, ce que l’on appelle de la programmation générique.

Nous avons vu :
▶ comment déclarer de tels modèles
▶ comment en créer des instances
▶ comment spécialiser certains modèles

Programmation Orientée Objet – Modèles Génériques – 24 / 24

	Objectifs
	Programmation générique
	Déclaration de modèles
	Instanciation
	Spécialisation
	Autres types de templates
	Compilation séparée
	Conclusion

