Objectifs

Programmation
générique

Déclaration de
modéles

Instanciation
Spécialisation

Programmation Orientée Objet :

Autres types de

Templates : les classes et fonctions génériques
Jean-Cédric Chappelier
Faculté 1&C

E P F L Programmation Orientée Objet — Modéles Génériques — 1/24

Objectifs du cours d’aujourd’hui

Le but de ce cours est de présenter les modeles de classes et de fonctions,
basés sur le concept de programmation générique (« generic programming »).

On parle aussi pour cela de polymorphisme paramétrique.

Note : Ce cours est un cours avanceé dont le contenu ne fera pas partie des examens.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 2/24

Un exemple

Programmation
générique

Prenons un exemple simple pour commencer :
une fonction échangeant la valeur de 2 variables.
Par exemple avec 2 entiers vous écririez une fonction comme :

// échange la valeur de ses arguments
void echange(int& i, int& j) {

int tmp(i);
i=73;
j = tmp;

}

Mais vous vous rendez bien compte que vous pourriez faire la méme chose (le méme
algorithme) avec deux double, ou méme deux objets quelconques, pour peu qu'ils
aient un constructeur de copie (0bj tmp(i) ;) et un opérateur de copie (operator=).

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 3/24

Exemple, suite...

L'écriture générale serait alors quelque chose comme :

Programmation
générique

// échange la valeur de ses arguments
void echange(Type& i, Type& j) {
Type tmp(i);
i=j;
j = tmp;
}

oU Type est une représentation générique du type des objets a échanger.

La fagcon exacte de le faire en C++ est la suivante :

// échange la valeur de ses arguments
template<typename Type>
void echange(Type& i, Type& j) {
Type tmp(i);
i=7;
J = tomp;
}

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 4 /24

...et fin

On pourra alors utiliser la fonction echange avec tout type/classe pour lequel le
constructeur de copie et 'opérateur d’affectation (=) sont définis.

Programmation
générique

Par exemple :

int a(2), b(4);
echange(a, b);

double da(2.3), db(4.5);
echange(da, db);

vector<double> va, vb;
echange (va, vb);

string sa("ca marche"), sb("coucou");
echange(sa, sb);

R Note : Un tel modéle de fonctions existe dans la bibliothéque algorithm et s’appelle swap.

Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 5/24

Programmation Programmation générique

Lidée de base est de passer les types de données comme parameétres
pour décrire des traitements trés généraux (« génériques »)

Il s’agit donc d’un niveau d’abstraction supplémentaire.

De tels modeles de classes/fonctions s’appellent aussi classes/fonctions génériques
ou patrons (chablons), ou encore « femplate ».

Vous en connaissez déja sans le savoir.

Par exemple la « classe » vector n’est en fait pas une classe, mais un modeéle de
classes :

c’est le méme modele que I'on stocke des char (vector<char>),

des int (vector<int>), ou tout autre objet (p.ex. vector<Figurex*>).

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 6/24

Modele de classes

Programmation
générique

Ce que I'on a fait dans I'exemple introductif avec des fonctions (echange ()) peut aussi
étre fait avec des classes.

On pourrait par exemple vouloir créer un modeéle de classes qui réalise une paire
d’'objets quelconques :

template<typename T1, typename T2>
class Paire {
public:
Paire(const T1& un, const T2& deux)
: premier(un), second(deux) {}
T1 get1() const { return premier; }
T2 get2() const { return second; }
void setl(const T1& val) { premier = val; }
void set2(const T2& val) { second = val; }
protected:
T1 premier;
T2 second;

};

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 7/24

Généralisation aux classes (2)

Programmation
générique

et par exemple créer la classe « paire string—double » :
Paire<string,double>

ou encore la classe « paire char—unsigned int » :
Paire<char,unsigned int>

Note : un tel modéle de classes existe dans la bibliothéque utility et s’appelle pair.

Les modéles de classes sont donc un moyen condensé d’écrire plein de classes
potentielles a la fois.

/7 (de méme que les modéles de fonctions/méthodes sont un moyen condensé d’écrire
plein de fonctions/méthodes potentielles a la fois)

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 8/24

Déclaration d’un modele A

Déclaration de

modéles Pour déclarer un modéle de classes ou de fonctions, il suffit de faire précéder Y 4
sa déclaration du mot clé template suivi de ses parameétres (qui sont donc des noms
génériques de type) suivant la syntaxe :

template<typename nomil, typename nom2, ...>

Exemple :

template<typename T1, typename T2>
class Paire {

Les types ainsi déclarés (paramétres du modéle) peuvent alors étre utilisés dans la
définition qui suit, exactement comme tout autre type.

Note : on peut aussi utiliser le mot class a la place de typename, par exemple :

template<class T1, class T2>
class Paire {
©EPFL 2026

Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modeles Génériques — 9/24

Déclaration d’'un modele (2)

Déclaration de

modéles Il est également possible de définir des types par défaut, avec la méme contrainte que
pour les parameétres de fonction : les valeurs par défaut doivent étre placées en dernier.

Exemple :

template<typename T1, typename T2 = unsigned int>
class Paire {

qui permettrait de déclarer la classe « paire char—unsigned int » simplement par :
Paire<char>
On peut méme faire

template<typename T1, typename T2 = T1>
class Paire {

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 10/24

Définitions externes des méthodes

de modeles de classes

Si les méthodes d’un modele de classes sont définies en dehors de cette classe,
elle devront alors aussi étre définies comme modele et étre précédées du mot clé
template, mais...

Déclaration de
modéles

...l est de plus absolument nécessaire d’'ajouter les parameétres du modeéle
(les types génériques) au nom de la classe
[pour bien spécifier que dans cette définition c’est la classe qui est en modele et non la méthode.]

Exemple : template<typename T1, typename T2>
class Paire {
public:
Paire(const T1&, const T2&);

};

// définition du constructeur
template<typename T1, typename T2>
Paire<T1,T2>::Paire(const T1& un, const T2& deux)
oEPFLZ026 : premier(un), second(deux) { }
s

E PF L Programmation Orientée Objet — Modéles Génériques — 11/24

Instanciation des modeéles

La définition des modéles ne génére en elle-méme aucun code : c’est juste une
description de plein de codes potentiels.

Instanciation

Le code n’est produit que lorsque tous les parametres du modéle ont pris chacun un
type spécifique.

Lors de Il'utilisation d’'un modéle, il faut donc fournir des valeurs pour tous les
parameétres (au moins ceux qui n'ont pas de valeur par défaut).
On appelle cette opération une instanciation du modeéle.

Linstanciation peut étre implicite lorsque le contexte permet au compilateur de décider
de l'instance de modele a choisir.
Par exemple, dans le code :

double da(2.3), db(4.5);
echange(da, db);

il est clair (par le contexte) qu'il s’agit de I'instance echange<double> du modele
OEPFL 2026 template<typename T> void echange(T&,T&); qu'il faut utiliser.

Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 12/24

Instanciation des modeles (2) A

Mais dans la plupart des cas, on explicite I'instanciation .
lors de la déclaration d’'un objet. 7
Instanciation C’est ce qui vous faites lorsque vous déclarez par exemple vector<double> tableau,

Il suffit dans ce cas de spécifier le(s) type(s) désiré(s) aprés le nom du modele de
classes et entre <>.

Linstanciation explicite peut aussi étre utile dans les cas ou le contexte n’est pas
suffisamment clair pour choisir.

Par exemple avec le modéle de fonctions

template <typename Type>
Type monmax(const Type& x, const Type& y)
{
if (x < y) return y;
, e return x; Il faudra alors écrire :
« monmax<double>(3.14, 7); »

I'appel « monmax(3.14, 7); » est ambigu.

Note C++17 : on peut aussi faire de I'instanciation implicite de modéle de classes :
?;Téézdori&(:happenev vector tab(b , 1. 0) 5

& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 13/24

Modeles, surcharge et spécialisation
Les modéles de fonctions peuvent trés bien étre surchargés comme les fonctions
usuelles (puisque, encore une fois, ce sont juste des facons condensées d’écrire plein
de fonctions a la fois).
Spécialisation Par exemple .
template<typename Type>
void affiche(const Type& t) {
cout << "J'affiche " << t << endl;
¥

// surcharge pour les pointeurs : on préfére ici écrire
// le contenu plutdt que 1l'adresse.
template<typename Type>
void affiche(Typex t) {
cout << "J'affiche " << *t << endl;

}

Note : on aurait méme pu faire mieux en faisant appel au premier modeéle :

template<typename Type>
©EPFL 2026
Jean-Cédric Ghappelier void affiche(Typex t) { affiche<Type>(*t); }

& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 14/24

Modeéles, surcharge et spécialisation (2)

Mais les modeles (y compris les modéles de classes) offrent un mécanisme
supplémentaire : la spécialisation qui permet de définir une version particuliere
Spécialisation d’une classe ou d’'une fonction pour un choix spécifiqgue des paramétres du modéle.

Par exemple, on pourrait spécialiser le second modeéle ci-dessus dans le cas des
pointeurs sur des entiers :

template<> void affiche<int>(int* t) {
cout << "J'affiche le contenu d'un entier : " << *t
<< endl;

La spécialisation d’'un modele (lorsqu’elle est totale) se fait en :
> ajoutant template<> devant la définition

» nommant explicitement la classe/fonction spécifiée
C’est le <int> apreés affiche dans I'exemple ci-dessus.

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 15/24

Exemple de spécialisation de classe

template<typename T1, typename T2>
class Paire {
. 5
Spécialisation
// specialisation pour les paires <string,int>
template<> class Paire<string,int> {
public:
Paire(const string& un, int deux)
: premier(un), second(deux) {}
string getl1() const { return premier; }
int get2() const { return second; 1}
void setl(const string& val) { premier = val; }
void set2(int val) { second = val; }

// une methode de plus
void add(int i) { second += i; }

protected:
string premier;

int second;

©EPFL 2026 } .
Jean-Cédric Chappelier ’
& Jamila Sam

EPEL

(Question : comment aurait-on
pu faire mieux ?)

Programmation Orientée Objet — Modéles Génériques — 16/24

Spécialisation : remarques

Note 1 : La spécialisation peut également s’appliquer uniquement a une méthode d’'un
modeéle de classes sans que 'on soit obligé de spécialiser toute la classe.
oo Utilisée de la sorte, la spécialisation peut s’avérer particulierement utile.
Note 2 : La spécialisation n’est pas une surcharge car il n'y a pas génération de plusieurs
fonctions de méme nom (de plus que signifie une surcharge dans le cas d'une
classe ?) mais bien une instance spécifique du modéle.

Note 3 : Pour les classes (pas pour les fonctions), il existe aussi des spécialisations
partielles (de toute la classe ou de certaines méthodes), mais cela nous
emmenerait trop loin dans ce cours.

Note 4 : Pour les fonctions, préférez la surcharge a la spécialisation :

void affiche(int* t) {
cout << "J'affiche le contenu d'un entier : " << *t
<< endl;
©EPFL 2026
Jean-Cédric Chappelier

& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 17/24

Autres types de
templates

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Modeéles paramétrés par des entiers
En plus des modéles paramétrés par un fype, on peut aussi écrire des modeles
paramétrés par des entiers, des valeurs enumérées, des pointeurs ou des
références.

lllustrons ici sur des modéles paramétrés par des entiers :
Exemple 1 : array<double, 3>

Exemple 2 : une classe représentant (le concept d’)un intervalle d’entiers :
entre N inclu et M exclu : [N, M|

template <int N, int M>

class IntRange

{

public:
int low() const { return min(N,M); }
int high() const { return max(N,M); }

bool contains(int x) const {
return (x >= low()) and (x < high());
}
}s

Programmation Orientée Objet — Modéles Génériques — 18/24

Autres types de
templates

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

€& suite de I'exemple
On pourrait méme I'afficher :

template <int N, int M>

ostream& operator<<(ostream& flot, IntRange<N, M> const& r) {
return flot << '[' << r.low() << ", " << r.high() << '[';

}

et créer un itérateur sur cette classe (voir semaine prochaine) :

class IntRangelterator {
public:
IntRangelterator(int index) : index_(index) {}

bool operator==(const IntRangelterator& x) const
{ return index_ == x.index_; }

bool operator!=(const IntRangelterator& x) const
{ return not(*this == x); }

int operator*() const { return index_; }
IntRangelterator& operator++() { ++index_; return *this; }

private: int index_; // se souvient ou 1l'on est

};

Programm@tion Orientée Objet — Modéles Génériques — 19/24

€& suite de I'exemple (2)

template <int N, int M>
class IntRange

{

public:

Autres types de typedef IntRangelterator const_iterator;
templates

const_iterator begin() const
{ return const_iterator(low()); }

const_iterator end() const
{ return const_iterator(high()); }

};

template <typename T>

void show_all(const T& t)

{
for (auto i : t) cout << i << ", ";
cout << "[END]" << endl;

}

©EPFL 2026 e
Jean-Cédric Chappelier show_all(IntRange<10, 20>());

& Jamila Sam

=EPFL Sttt ... Programmgtion Orientée Objet — Modéles Génériques — 20 /24

Autres types de
templates

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

EPEL

Modéles paramétrés par des entiers (2)
On peut bien sir aussi :

> spécialiser ces modeles paramétrés par des entiers

template <int N>
class Factorial {
enum { value = N * Factorial<N - 1>::value };

};

template <>
class Factorial<0> {
enum { value = 1 };

};

» combiner des parametres de types et entiers :

template <typename type, int N>
class MachinTruc {

protected:
array<type, N> contenu;

}

Programmation Orientée Objet — Modéles Génériques — 21/24

Modeles de classes et @
compilation séparée

Les modéles de classes doivent nécessairement étre définis au moment de leur
instanciation afin que le compilateur puisse générer le code correspondant.

Compilation

séparée Ce qui implique, lors de compilation séparée, que les fichiers d’en-téte (.h) doivent
contenir non seulement la déclaration, mais également la définition compléte de ces
modéles!!

On ne peut donc pas séparer la déclaration de la définition dans différents fichiers...
Ce qui présente plusieurs inconvénients :

> les mémes instances de modeles peuvent étre compilées plusieurs fois;

> et peuvent se retrouver en de multiples exemplaires dans les fichiers exécutables;

> on ne peut plus cacher leurs définitions (p.ex. pour des raisons de confidentialité,
protection contre la concurrence, etc.).

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 22/24

Conclusion

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

=PrFL

" Templates \/@

Déclarer un modéle de classe ou de fonction :
template<typename nomil, typename nom2, ...>

Définition externe des méthodes de modeles de classes : template<typename nomi,
typename nom2, ...> NomClasse<noml, mom2, ...>::NomMethode(...

Instanciation : spécifier simplement les types voulus aprés le nom de la
classe/fonction, entre <> (Exemple : vector<double>)

Spécialisation (totale) de modele pour les types typel, type2... : template<>
NomModele<typel, type2,...>

...sutte de la declaration...

Compilation séparée : pour les templates, il faut tout mettre (déclarations et définitions)
dans le fichier d’en-téte (.h).

Programmation Orientée Objet — Modéles Génériques — 23/24

Ce que j’ai appris aujourd’hui

A pouvoir faire des modeles génériques de fonctions ou de classes, indépendamment
du type, ce que I'on appelle de la programmation générique.

Conclusion

Nous avons vu :
» comment déclarer de tels modeles
» comment en créer des instances
» comment spécialiser certains modéles

©EPFL 2026
Jean-Cédric Chappelier
& Jamila Sam

E PF L Programmation Orientée Objet — Modéles Génériques — 24 /24

	Objectifs
	Programmation générique
	Déclaration de modèles
	Instanciation
	Spécialisation
	Autres types de templates
	Compilation séparée
	Conclusion

