
Notes de cours
Semaine 16

Cours Turing

1 Cryptographie à clé publique : suite

Dans ce chapitre, nous allons voir un nouveau type de cryptographie à clé publique, où le
but n’est pas de partager une clé commune pour ensuite échanger des messages chiffrés, mais
de directement communiquer un message chiffré ! Nous allons voir comment cette magie est
possible avec un des protocoles les plus célèbres de cryptographie à clé publique : le protocole
de Rivest-Shamir-Adleman (RSA). Puis nous verrons comment on peut avec le même principe
certifier un document avec une signature digitale (DSA).

1.1 Protocole de Rivest-Shamir-Adleman (RSA)

Le scénario auquel s’applique ce protocole est un peu différent de celui où deux personnes
essayent de communiquer secrètement des messages entre elles. Il faut plutôt penser à Alice
comme une utilisatrice et à Bob comme un serveur central, auquel s’adressent de nombreuses
personnes (typiquement, un site web auquel Alice désire se connecter). La contrainte maintenant
est d’établir une(des) connection(s) sécurisée(s) sans qu’il soit nécessaire pour Bob de faire
autre chose que de publier une clé qu’Alice et d’autres personnes puissent utiliser pour chiffrer
directement leurs messages :
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Encore un peu d’arithmétique modulaire !

Dans ce chapitre, nous aurons besoin d’un nouvel élément d’arithmétique modulaire. Rappelez-
vous le petit théorème de Fermat :

Si N est un nombre premier et 1 ≤ A ≤ N − 1, alors AN−1 (mod N) = 1.

Il existe une version plus générale, le thèorème d’Euler 1, donc l’énoncé est le suivant :

Si N est un nombre entier et 1 ≤ A ≤ N − 1 avec PGDC(A,N) = 1, alors Aϕ(N) (mod N) = 1,

où ϕ est la fonction d’Euler. Cette fonction est définie ainsi :

ϕ(N) est le nombre de nombres entiers 1 ≤ A ≤ N − 1 tels que PGDC(A,N) = 1.

En particulier, on trouve que :

- si N est premier, alors ϕ(N) = N − 1, car dans ce cas, tous les nombres A compris entre 1 et
N − 1 vérifient PGDC(A,N) = 1 : on retrouve ici le petit théorème de Fermat.

- si N = P ·Q, avec P et Q premiers, vous pouvez vérifier que ϕ(N) = (P − 1) · (Q− 1). Par
exemple, si N = 10 = 2 · 5, alors ϕ(N) = 1 · 4 = 4 ; en effet, les nombres A compris entre 1 et 9
tels que PGDC(A, 10) = 1 sont A = 1, 3, 7, 9.

Remarque importante : Il est difficile de calculer la valeur de ϕ(N) si on ne connaît pas la
décomposition de N en produit de facteurs premiers. Si par contre on la connaît, alors le calcul
devient facile (il suffit d’effectuer le produit (P − 1) · (Q− 1) dans l’exemple précédent).

Revenons maintenant au protocole RSA. Voici comment celui-ci fonctionne :

1. Bob génère tout d’abord deux grands nombres premiers P et Q (distincts), et calcule
N = P ·Q. Il publie ce nombre N (mais garde les nombres premiers P et Q secrets).

2. Il choisit ensuite un nombre C entre 2 et N −1 tel que PGDC(C, ϕ(N)) = 1. Bob publie
également ce nombre C.

3. Il calcule alors le nombre D tel que C · D = 1 (mod ϕ(N)) : ce nombre D est donc
l’inverse de C modulo ϕ(N). On peut montrer que cette opération est facile à effectuer,
si on connaît la valeur de ϕ(N), bien sûr. Bob garde ce nombre D secret.

4. Puis vient l’étape du chiffrement : pour envoyer un message X compris entre 2 et N − 1
à Bob, Alice calcule d’abord Y = XC (mod N) et envoie Y .

5. Et finalement vient l’étape du déchiffrement : Bob, pour retrouver le message envoyé par
Alice, effectue l’opération Y D (mod N) et retrouve ainsi X, comme nous allons le voir.

1. A noter qu’il existe par ailleurs une démonstration courte et très élégante de ce théorème si on connaît
des choses sur les groupes. Voir https://en.wikipedia.org/wiki/Euler’s_theorem
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Vérifions que tout ceci fonctionne bien :

1. Quel est le message reçu par Bob ? Calculons :

Y D (mod N) = (XC (mod N))D (mod N) = XC·D (mod N) = X ?

Par construction, C ·D = 1 (mod ϕ(N)) ; ceci veut dire que C ·D = 1 +K · ϕ(N) pour
un nombre entier K et donc

Y D (mod N) = X1+K·ϕ(N) (mod N)

- Si PGDC(X,N) = 1, alors c’est aussi vrai que PGDC(XK , N) = 1, et donc

XK·ϕ(N) (mod N) = (XK)ϕ(N) (mod N) = 1

par le théorème d’Euler, ce qui implique que Y D (mod N) = X, car 2 ≤ X ≤ N − 1.

- Si PGDC(X,N) ̸= 1, alors une autre démonstration est nécessaire, mais notez que ce
cas de figure arrive seulement dans le cas où X est un multiple de P ou de Q, donc très
rarement.

2. Et que peut faire maintenant Eve, qui connaît les valeurs de N , C et Y ? Pour retrouver
X, elle devrait d’abord retrouver la valeur du nombre D (afin d’effectuer ensuite le
même calcul que Bob). Mais pour cela, elle a besoin de connaître le produit ϕ(N) =
(P − 1) (Q − 1), or elle ne connaît que le nombre N = P · Q. Et c’est là que vient
s’ajouter la dernière pièce du puzzle, déjà mentionnée ci-dessus : retrouver les nombres
P et Q à partir de N revient à factoriser ce nombre. Or il se trouve que cette opération
est a priori également une opération difficile à réaliser (du moins, personne n’a trouvé
jusqu’à maintenant d’algorithme efficace pour résoudre ce problème).

A propos de factorisation. . .

Pour finir, mentionnons que la sécurité du protocole RSA est compromise à l’heure actuelle par
le développement des ordinateurs quantiques, qui pourraient bien un jour permettre d’effectuer
efficacement des factorisations de grands nombres entiers, grâce à l’algorithme de Shor 2. Lorsque
les premiers ordinateurs quantiques ont vu le jour au début des années 2’000, ceux-ci pouvaient
essentiellement effectuer des factorisations du type 15 = 3·5, et tout le monde a rigolé. . . Mais il
faut bien avouer qu’aujourd’hui, soit vingt ans plus tard, plus personne ne rigole, car même s’il
subsiste des incertitudes, il se pourrait bien que les prochaines années voient fleurir des choses
très intéressantes de ce côté-là ! A tel point que le sujet de la cryptographie post-quantique, celle
qui résisterait aux ordinateurs quantiques, est maintenant tout à fait sérieusement étudiée dans
le monde académique 3.

2. Un sujet passionnant, mais qui mériterait rien qu’à lui un cours complet. . .
3. Signalons ici qu’il existe aussi une cryptographie quantique, qui utilise les propriétés intrinsèques des

particules de lumière (les photons) pour chiffrer des messages.
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1.2 Signature digitale (DSA)

Le but de cette seconde partie est différent de la première, mais utilise le même principe. L’idée
est de proposer à Alice un moyen digital pour signer un message, afin que Bob puisse être
sûr que le message en question provient bien d’Alice et pas de quelqu’un d’autre (Eve, par
exemple). Faites attention qu’on oublie donc ici l’idée de transmettre secrètement un message !

Avant de présenter le protocole de signature digitale, nous avons besoin d’introduire un nouvel
élément : les fonctions de hachage.

Fonctions de hachage

A l’origine, une fonction de hachage H a pour but de faire correspondre à un message donné X
une valeur de hachage H(X) qui satisfasse les propriétés suivantes :

1. H(X) doit être déterministe (i.e., non aléatoire) ;
2. H(X) doit occuper (significativement) moins de place en mémoire que X lui-même ;
3. si X et Y diffèrent légèrement, alors H(X) et H(Y ) doivent différer grandement.

Exemple : En identifiant les lettres majuscules à des nombres entre compris 0 et 25, comme
nous l’avons déjà fait auparavant, nous pouvons calculer pour un message composé de n lettres :

a) la somme des n lettres modulo 26

b) la somme des n lettres, multipliée chacune par sa position dans le message, modulo 26

et obtenir ainsi une valeur de hachage composée des deux lettres résultantes. Voici un exemple :
si le message est BONJOUR, alors

a) B +O +N + J +O + U +R (mod 26)
= 1 + 14 + 13 + 9 + 14 + 20 + 17 (mod 26) = 88 (mod 26) = 10 = K

b) 1 ·B + 2 ·O + 3 ·N + 4 · J + 5 ·O + 6 · U + 7 ·R (mod 26)
= 1 · 1 + 2 · 14 + 3 · 13 + 4 · 9 + 5 · 14 + 6 · 20 + 7 · 17 (mod 26)
= 1 + 28 + 39 + 36 + 70 + 120 + 119 (mod 26) = 413 (mod 26) = 23 = X

Donc la valeur de hachage du message BONJOUR est KX. Tandis que vous pouvez vérifier que
la valeur de hachage du message BONKOUR est LB : une petite modification dans le message
d’origine mène bien à une valeur de hachage substantiellement différente.

Il est possible de faire de nombreux usages des fonctions de hachage :

- Celles-ci peuvent être utilisées pour vérifier qu’un message transmis ne contient pas d’erreur :
si la valeur de hachage transmise ne correspond pas à celle attendue, on demande à l’expéditeur
de retransmettre le message.

- Elle peuvent aussi être utilisées pour classer des grands jeux de données en économisant de
la place. Au lieu d’enregistrer les données telles quelles, on enregistre leurs valeurs de hachage
dans une table de hachage qui occupe moins de place en mémoire.

- Finalement, elles peuvent être utilisées à des fins cryptographiques, comme nous allons le voir.
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Signature digitale

Revenons au problème évoqué plus haut : Alice veut transmettre un message à Bob et aussi lui
donner un moyen de vérifier que c’est bien elle qui est l’auteure de ce message.

Une solution naïve serait la suivante : Alice transmet le message X à Bob, et calcule, avec une
fonction de hachage H donnée, une valeur de hachage H(X), qu’elle utilise comme signature du
message. Cependant, ce système a le grave défaut de supposer qu’Eve ne connaît pas la fonction
de hachage H ; il ne respecte donc pas le principe de Kerkhoffs vu au début de ce cours, qui
dit qu’il faut toujours supposer qu’Eve connaît le système utilisé. Sous cette hypothèse, rien
n’empêcherait Eve d’envoyer un message Y à Bob, et d’y apposer sa signature H(Y ) pour faire
croire à Bob que ce message vient d’Alice. Il faut donc trouver autre chose.

Pour ce faire, nous allons réutiliser les idées du protocole RSA, mais à l’envers, en quelque
sorte. Voici comment procéder :

1. Alice génère d’abord deux grands nombres premiers P et Q (distincts) et calcule N =
P ·Q, qu’elle publie.

2. Puis elle choisit un autre nombre C entre 2 et N−1 tel que PGDC(C, ϕ(N)) = 1, qu’elle
garde secret.

3. Elle calcule ensuite le nombre D tel que C ·D (mod ϕ(N)) = 1 et publie ce nombre.
4. C’est ici qu’intervient la fonction de hachage H, publique elle aussi, dont on supposera

que l’image est l’ensemble des nombres allant de 0 à N − 1. Pour envoyer le message
X, Alice calcule H(X), puis S = H(X)C (mod N), et envoie finalement X et S à Bob.
S est maintenant la vraie signature du message, qu’Eve ne peut pas contrefaire, comme
nous allons le voir ci-dessous.

5. Pour vérifier que le message provient bien d’Alice, Bob calcule H(X) et SD (mod N). Si
ces deux nombres sont égaux, Bob a alors la garantie que le message vient bien d’Alice.

A nouveau, vérifions que tout ceci fonctionne bien :

1. Si le message X a bien été envoyé par Alice et que celle-ci a calculé la valeur de la
signature S comme décrit ci-dessus, alors Bob trouve effectivement que SD (mod N) =
H(X)C·D (mod N) = H(X) par le théorème d’Euler et le fait que C ·D (mod ϕ(N)) = 1.

2. Pour contrefaire la signature d’Alice, Eve devrait connaître la valeur de C, mais elle
ne connaît que N , D, X, S et la fonction H. Or elle ne sait pas factoriser N (ce qui
lui permettrait de calculer ϕ(N), et donc de retrouver la valeur de C), ni résoudre le
problème du logarithme discret S = H(X)C (mod N) (ce qui lui permettrait également
de retrouver la valeur de C). Elle ne peut donc pas utiliser ce nombre C pour signer son
propre message Y et ainsi faire croire à Bob que celui-ci provient d’Alice.

Remarque : Les nombres N et D publiés par Alice doivent être des nombres dont on est sûr
a priori qu’ils proviennent d’Alice ! De façon pratique, on peut penser à ces nombres comme
un certificat qui établit une fois pour toutes l’identité d’Alice. Ensuite, elle utilise ce même
certificat pour envoyer un ou plusieurs messages X1, X2, X3, . . . et y apposer à chaque fois la
signature digitale correspondante S1, S2, S3 . . .
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