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Exercice 1. Grâce à cette inégalité, on a n2

2n ≤ 24n2

n3 = 24
n (pour n entier et n ≥ 4). Nous avons vu au cours

que la suite 1/n tend vers 0 et la proposition sur le produit de limites nous dit que la suite 24 · 1/n tend vers
24 · 0 = 0. Comme 0 ≤ n2

2n ≤ 24
n pour tout n ∈ N, on voit que la suite (n

2

2n )n∈N converge vers 0 : pour tout ε > 0,
il existe un N ∈ N avec |n

2

2n − 0| = n2

2n ≤ 24
n = | 24n − 0| < ε pour tout n ≥ N .

Exercice 2.
a) Soit ε > 0. Par le cours, il existe N ∈ N∗ tel que 1

N < ε. Si on démontre que 2
3N

≤ 1
N pour tout N ∈ N∗, on

aura gagné.
Montrons donc par récurrence que pour tout N ∈ N∗, on a 2N ≤ 3N (en multipliant chaque côté de cette
inégalité par 1

N ·3N , on obtient bien 2
3N

≤ 1
N ). L’initialisation est vraie puisque 2 · 1 = 2 ≤ 3 = 31. Pour

l’hérédité, on écrit

2(N + 1)
1≤N

≤ 2(N +N) = 2 · 2N ≤ 3 · 2N
hyp.
≤ 3 · 3N = 3N+1.

La récurrence est complète, et l’affirmation demandée est démontrée.

b) Remarquons que xn+1 =
xn + 4

3
=

xn

3
+

4

3
. Ainsi xn est positif quelque soit n, et de plus si la limite existe,

alors elle sera plus grande ou égale à
4

3
. En faisant tendre n vers l’infini dans la relation de récurrence et

en observant les règles d’addition et de multiplication des limites, on a qu’un candidat x à la limite doit
satisfaire l’équation

x =
x+ 4

3
,

dont la seule solution est x = 2. Montrons que c’est bien la limite de la suite ; pour ceci, estimons la différence

|xn+1 − x| =
∣∣∣∣xn + 4

3
− x+ 4

3

∣∣∣∣ = ∣∣∣∣xn − x

3

∣∣∣∣ .
En itérant ce procédé, on obtient |xn+1 − x| = |x0 − x|

3n+1
=

2

3n+1
, soit encore |xn − x| = 2

3n
.

Soit maintenant ε > 0. Par la partie a) de cette exercice, il existe un entier N tel que
2

3N
< ε, c’est-à-dire

|xn − x| = 2

3n
≤ 2

3N
< ε pour tout n ≥ N

ce qui montre bien que la suite xn tend vers 2.

Exercice 3. En raisonnant comme dans l’exercice précédent, on doit avoir que la limite, si elle existe, vérifie

x =
√
1 + x, donc x2 = 1 + x, soit encore x2 − x − 1 = 0. Ainsi les candidats potentiels sont

1±
√
5

2
; comme

tous les termes xn sont positifs, on peut écarter la solution négative, et le seul candidat restant est x =
1 +

√
5

2
.

Montrons que ce x est bien la limite de la suite en estimant la différence

|xn+1 − x| =
∣∣√1 + xn −

√
1 + x

∣∣ = ∣∣∣∣ (1 + xn)− (1 + x)√
1 + xn +

√
1 + x

∣∣∣∣ = ∣∣∣∣ xn − x

xn+1 + x

∣∣∣∣ < |xn − x|
2

où on a utilisé dans la deuxième égalité la multiplication par
√
1+xn+

√
1+x√

1+xn+
√
1+x

et une identité remarquable pour
enlever les racines, et dans la dernière inégalité on a utilisé le fait que xn et x sont plus grands que x1 = 1. En
itérant ce procédé, on trouve finalement

|xn+1 − x| < |x0 − x|
2n+1

<
2

2n+1
=

1

2n
soit encore |xn − x| < 1

2n−1
.

Continuons de raisonner comme à l’exercice précédent, et montrons par récurrence que N ≤ 2N−1 pour tout
N ∈ N∗. L’initialisation suit de 1 ≤ 1 = 21−1, et l’hérédité de

N + 1
1≤N

≤ N +N
hyp.
≤ 2N−1 + 2N−1 = 2 · 2N−1 = 2N

ce qui conclut la récurrence. On en déduit que 1
2N−1 ≤ 1

N pour tout entier N positif.
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Soit maintenant ε > 0. Par le cours, il existe N ∈ N∗ tel que 1
N < ε, et par ce qui précède,

|xn − x| < 1

2n−1
≤ 1

2N−1
≤ 1

N
< ε pour tout n ≥ N .

La suite (xn) converge donc bien vers x =
1 +

√
5

2
.

Exercice 4.

a) Calculons d’abord xn+2 =
1

1 + xn+1
=

1 + xn

2 + xn
, et effectuons une étude de signe de f(x) =

1 + x

2 + x
−1

2
=

x

2x+ 4
(dont la VI est x = −2 et le zéro x = 0).
TDS :

x

2x + 4

f(x)

−2 0

− − 0 +

− 0 + +

+ − 0 +

Ce tableau montre que si xn ≥ 0, alors f(xn) ≥ 0, c’est-à-dire xn+2 ≥ 1
2 . Avec cette observation, il faut

effectuer deux récurrences : une pour les indices impairs, et une pour les pairs :
• Indices impairs. Pour l’initialisation, x1 = 1 est bien plus grand ou égal à 1

2 . Pour l’hérédité, si xn ≥ 1
2 ,

alors xn ≥ 0 ( !) et on a montré ci-dessus qu’il suit xn+2 ≥ 1
2 .

• Indices pairs. Pour l’initialisation, on calcule x2 = 1
1+1 = 1

2 , qui est bien plus grand ou égal à 1
2 . Pour

l’hérédité, on procède comme au cas précédent : si xn ≥ 1
2 , alors xn ≥ 0 et donc xn+2 ≥ 1

2 .
Ces deux récurrences montrent qu’on a bien xn ≥ 1

2 pour tout n ≥ 1.
b) Comme dans les deux exercices précédents, la limite x, si elle existe, vérifie x = 1

1+x , c’est-à-dire qu’elle
est solution de x2 + x − 1 = 0. Les candidats potentiels sont donc −1±

√
5

2 ; comme tous les termes xn sont
positifs (et même plus grand ou égaux à 1

2 ), on peut écarter la solution négative et donc le seul candidat est

x =
−1 +

√
5

2
. Montrons que ce x est bien la limite de la suite en estimant la différence

|xn+1 − x| =
∣∣∣∣ 1

1 + xn
− 1

1 + x

∣∣∣∣ = ∣∣∣∣ (1 + x)− (1 + xn)

(1 + xn)(1 + x)

∣∣∣∣ = |xn − x|
(1 + xn)(1 + x)

<
4

9
· |xn − x| < 1

2
|xn − x|.

Pour l’avant-dernière inégalité, on a utilisé 1 + xn ≥ 1 + 1
2 = 3

2 et 1 + x = 1+
√
5

2 > 1+2
2 = 3

2 . En itérant ce
procédé, on obtient

|xn+1 − x| < 1

2n
· |x1 − x| = 1

2n
· 3−

√
5

2
<

1

2n
· 3− 2

2
=

1

2n+1
soit encore |xn − x| < 1

2n

Par l’exercice précédent, on sait que N ≤ 2N−1, et donc aussi N ≤ 2N pour tout N ∈ N∗.
Soit maintenant ε > 0. Par le cours, il existe N ∈ N∗ tel que 1

N < ε, et par ce qui précède,

|xn − x| < 1

2n
≤ 1

2N
≤ 1

N
< ε pour tout n ≥ N .

La suite (xn) converge donc bien vers x =
−1 +

√
5

2
.

c) L’écriture donnée pour q est la forme “développée” de q = lim
x→+∞

xn, où

x1 = 1 , x2 =
1

1 + 1
=

1

1 + x1
, x3 =

1

1 + 1
1+1

=
1

1 + x2
, x4 =

1

1 + 1
1+ 1

1+1

=
1

1 + x3
, . . .

Cette suite est la suite dont traite cet exercice, et donc q =
−1 +

√
5

2
, qui se trouve être l’inverse du nombre

d’or (voir aussi l’exercice suivant sur la suite de Fibonacci).
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Exercice 5.

a) On a
(1 +

√
5)2

2
=

1 + 2
√
5 + 5

2
= 3 +

√
5 et

(1−
√
5)2

2
=

1− 2
√
5 + 5

2
= 3−

√
5.

b) F1 =
1 +

√
5− (1−

√
5)

2
√
5

= 1,

F2 =
(1 +

√
5)2 − (1−

√
5)2

22
√
5

=
1 + 2

√
5 + 5− (1− 2

√
5 + 5)

4
√
5

= 1,

F3 =
(1 +

√
5)3 − (1−

√
5)3

23
√
5

=
1 + 3

√
5 + 15 + 5

√
5− (1− 3

√
5 + 15− 5

√
5)

8
√
5

=

√
5(6 + 10)

8
√
5

= 2.

c) Rappelons que
1 +

√
5

2
= φ est le nombre d’or et notons φ =

1−
√
5

2
= − 1

φ
. On a alors :

Fn + Fn−1 =
φn − φn

√
5

+
φn−1 − φn−1

√
5

=
φn−1(1 + φ)− φn−1(1 + φ)√

5

Par le calcul de b), on a φ2 = 1 + φ et φ2 = 1 + φ ; donc

φn−1φ2 − φn−1φ2

√
5

=
φn+1 − φn+1

√
5

= Fn+1

Fibonacci étudia cette suite de nombres entiers et l’illustra avec la croissance d’une population de lapins
imaginaires (les populations de lapins réels ne croissent pas selon cette suite). On commence avec une paire
de lapins ; au bout d’un mois, ils sont adultes et après une gestation d’un mois, la femelle met au monde une
deuxième paire de lapins. Fn est le nombre de paires de lapins au bout de n mois. Le nombre de paires au
(n+1)-ième mois vaut donc Fn (aucun lapin ne meurt !)+Fn−1 (chaque paire qui était là un mois avant a eu
le temps de s’accoupler). C’est la relation de Fibonacci. Pour connaître le nombre de paires de lapins après
20 mois, on peut utiliser la formule utilisant le nombre d’or plutôt que de devoir itérer 20 fois la relation de
récurrence. Voici les 19 premiers nombres de cette suite :

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

d) Comme F1 et F2 sont entiers, et que chaque nombre de Fibonacci est la somme des deux précédents, on en
déduit que chaque nombre de Fibonacci est entier.

e) On a 1
qn+1

= Fn+2

Fn+1
= Fn+1+Fn

Fn+1
= 1+ Fn

Fn+1
= 1+ qn, c’est-à dire qn+1 = 1

1+qn
. Comme q1 = 1, cette suite (qn)

est précisément la suite étudiée dans l’exercice précédent : elle converge vers q = −1+
√
5

2 .
Par la proposition sur les quotients de suites, la suite (1/qn) converge vers

lim
n→+∞

1

qn
=

2

−1 +
√
5
=

2

−1 +
√
5
· 1 +

√
5

1 +
√
5
=

2(1 +
√
5)

−12 +
√
5
2 =

1 +
√
5

2
= φ

Exercice 6.
a) Vrai. On devine que la limite sera 0, mais montrons-le. Soit ε > 0. Comme

(
1
n

)
n∈N∗ converge vers 0, il existe

N ∈ N∗ tel que ∣∣ 1
n

∣∣ = ∣∣ 1
n − 0

∣∣ < ε pour tout n ≥ N.

On observe que la quantité à rendre plus petite que ε dans notre cas est
∣∣(−1)n · 1

n − 0
∣∣ =

∣∣ 1
n

∣∣, qui est
exactement celle ci-dessus.
Une autre manière de procéder est d’utiliser le théorème des deux gendarmes (que nous verrons très bientôt),
ainsi que le fait que

lim
n→+∞

− 1
n = lim

n→+∞
(−1 · 1

n ) = − lim
n→+∞

1
n = 0

par des résultats du cours. Comme − 1
n ≤ (−1)n · 1

n ≤ 1
n , et que les deux suites

(
− 1

n

)
n∈N∗ et

(
1
n

)
n∈N∗

convergent toutes deux vers 0, on en conclut que (−1)n · 1
n converge aussi vers 0.

b) Cette assertion est fausse. Prenons par exemple pour (xn) la suite de terme général xn = (−1)n qui n’a pas
de limite, et pour (yn) la suite identiquement nulle (yn = 0 pour tout n ∈ N) qui converge vers 0. Alors la
suite (xn · yn) et telle que xn · yn = 0 pour tout n, elle converge donc vers 0.

3



c) Faux. En effet, pour que l’égalité proposée soit vraie, il faut d’abord s’assurer que les deux suites (xn) et
(yn) convergent (voir les hypothèses de la proposition sur la limite d’un produit). Par exemple, les suites
de terme général xn = (−1)n et yn = (−1)n+1 sont telles que ni lim

n→+∞
xn, ni lim

n→+∞
yn n’existe, mais

lim
n→+∞

(xn · yn) = −1.

d) Faux. Par exemple, si xn = −n et yn = 0 pour tout n ∈ N. En effet, dans ce cas, la suite (xn) tend vers −∞
et la suite (yn) converge vers 0. Cependant, la suite (xn · yn) est identiquement nulle et converge donc vers 0.

e) Cette assertion est fausse : par exemple, la suite de terme général xn = 3
2 + (−1)n · 1

2 oscille entre 1 et 2.
f) Cette assertion est fausse : par exemple, la suite ((−1)n · 1

n ) de a) n’est pas monotone mais converge vers 0.

Exercice 7.
a) Soit ε > 0 fixé. Comme la suite (xn)n∈N converge, elle est bornée (résultat du cours). Il existe donc A ∈ R∗

+

avec |xn| ≤ A. En fait, nous aurons besoin de B := max{A; |y|}.
Comme lim

n→+∞
xn = x, il existe N1 ∈ N tel que |xn−x| < ε

2B pour tout n ≥ N1. De même, comme lim
n→∞

yn = y,

il existe N2 ∈ N tel que |yn − y| < ε
2B pour tout n ≥ N2. Avec N := max{N1, N2}, on a pour tout n ≥ N :

|xn · yn − x · y| idée !
= |xn · yn − xn · y + xn · y − x · y| ≤ |xn · yn − xn · y|+ |xn · y − x · y|

= |xn| · |yn − y|+ |xn − x| · |y| ≤ B · ε

2B
+

ε

2B
·B = ε

Ainsi, la suite (xn · yn)n∈N converge bien vers x · y.
b) La suite constante (a)n∈N converge vers a (résultat du cours), et par hypothèse, la suite (xn)n∈N converge

vers x ; par a), on a lim
n→+∞

(a · xn) = lim
n→+∞

a · lim
n→+∞

xn = a · x. De la même manière, lim
n→+∞

(b · yn) = b · y.
Comme la limite d’une somme est la somme des limites (par un exercice précédent), on a

lim
n→+∞

(a · xn + b · yn) = lim
n→+∞

(a · xn) + lim
n→+∞

(b · yn) = a · x+ b · y

Exercice 8. Supposons a un réel fixé et posons P (k) : lim
n→+∞

a
nk = 0.

• P (1) : Comme lim
n→+∞

1
n = 0, on a par le cours lim

n→+∞
a
n = lim

n→+∞

(
a · 1

n

)
= a · lim

n→+∞
1
n = 0. P (1) est donc vrai.

• P (k) =⇒ P (k + 1) : La suite
(
1
n

)
converge par le cours, la suite

(
a
nk

)
converge par P (k), et la limite d’un

produit est le produit des limites (par le cours ou l’exercice précédent). Conséquemment,

lim
n→+∞

a
nk+1 = lim

n→+∞
a
nk · lim

n→+∞
1
n

P (k)
= 0 · 0 = 0.

Donc P (k) est vrai pour tout k ∈ N∗.

Exercice 9.

a) x2 − x1 = 1 +
1

2
− 1 =

1

2
, x4 − x2 = 1 +

1

2
+

1

3
+

1

4
− 1− 1

2
=

1

3
+

1

4
, x8 − x4 =

1

5
+

1

6
+

1

7
+

1

8
.

b) x2n − xn =
1

2n︸︷︷︸
≥1/2n

+
1

2n− 1︸ ︷︷ ︸
≥1/2n

+ · · ·+ 1

n+ 1︸ ︷︷ ︸
≥1/2n

≥ n · 1

2n
=

1

2
.

c) On a 1 > 1/2,

1/2 ≥ 1/2,

1/3 + 1/4 > 1/4 + 1/4 = 1/2,

1/5 + 1/6 + 1/7 + 1/8 > 4 · 1/8 = 1/2.

En additionnant termes à termes les deux côtés de l’inégalité on obtient x8 ≥ 4 · 1/2 = 2 et donc on peut
prendre K = 8 (avec 1 ≥ 1 plutôt que 1 > 1/2, on trouverait que l’on peut même prendre K = 4 ).

d) De la même façon, on peut prouver que 1 +
1

2
+ · · · + 1

2t
> (t + 1) · 1

2
et donc si on veut que xn ≥ 3 pour

tout n ≥ L, il faut choisir L = 2t avec t tel que (t + 1) · 1
2 ≥ 3. On prend donc t = 5 et L = 25 = 32. (Ou,

avec 1 ≥ 1 comme ci-dessus, on trouve L = 16. On peut même prendre L = 11.)
e) Avec le même raisonnement on prend t tel que (t+ 1) · 1

2 ≥ 4. Ainsi on peut prendre t = 7 et M = 27 = 128.
(Ou encore plus efficacement, M = 64, voire encore M = 31.)

f) Comme on l’a vu aux points précédents, il suffit de prendre N = 2t avec t tel que (t+1) · 1
2 ≥ k. Ainsi les xn

sont arbitrairement grands, et la suite (xn) tend donc vers +∞.
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Bonus. Soit ε > 0 fixé. Comme y ̸= 0, on peut poser ε1 := |y|
2 > 0, et comme lim

n→∞
yn = y, il existe N1 ∈ N tel

que |yn − y| < ε1 pour tout n ≥ N1. De plus, |y| = |y − yn + yn| ≤ |y − yn| + |yn| implique |y| < ε1 + |yn|, et

donc
|y|
2 = |y| − ε1 < |yn| pour tout n ≥ N1. Ceci nous permet d’écrire (en prévision de la conclusion !) :

1

|y · yn|
=

1

|y| · |yn|
<

2

|y| · |y|
=

2

|y|2
pour tout n ≥ N1

Considérons maintenant ε2 := |y|2
2·(|x|+|y|) · ε > 0. Comme lim

n→∞
xn = x, il existe N2 ∈ N tel que |xn − x| < ε2

pour tout n ≥ N2, et comme lim
n→∞

yn = y, il existe N3 ∈ N tel que |yn − y| < ε2 pour tout n ≥ N3. En prenant
N := max{N1;N2;N3}, on déduit que pour tout n ≥ N ,∣∣∣∣xn

yn
− x

y

∣∣∣∣ = ∣∣∣∣xn · y − x · yn
yn · y

∣∣∣∣ idée !
=

∣∣∣∣xn · y − x · y + x · y − x · yn
yn · y

∣∣∣∣
≤

∣∣∣∣xn · y − x · y
yn · y

∣∣∣∣+ ∣∣∣∣x · y − x · yn
yn · y

∣∣∣∣ = 1

|yn · y|
· ( |y| · |xn − x|+ |x| · |yn − y| )

<
2

|y|2
· ( |x|+ |y| ) · ε2 = ε

Ainsi la suite
(

xn

yn

)
n∈N

converge bien vers x
y .
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