Cours Euler — 2° Corrigé 19 2025-2026

Exercice 1. Le probléme est que P(2) est utilisée implicitement, une proposition clairement fausse. En d’autres
termes : Uinitialisation devrait se faire avec P(2).

En effet, récrivons la démonstration proposée de I'hérédité (dont l'idée sera utilisée plus tard en combinatoire)
plus explicitement, en supposant que P(2) est vraie(!). Notons C' un ensemble de n + 1 crayons, et formons un
sous-ensemble A de n crayons et un sous-ensemble B de 2 crayons tels que AU B = C. En particulier, AN B
posséde un crayon qui, par P(n), est de la méme couleur que tous les crayons de A et, par P(2), est de la méme
couleur que tous les crayons de B. Donc tous les crayons sont bien de la méme couleur que celui de AN B
(remarquons I'importance de P(2), ainsi que de la comparaison de la couleur de chaque crayon a celle du crayon
de référence de AN B).

Exercice 2.
a) Posons P(n):n!>2""1
e P(1) : D’un co6té, on a 1! = 1; de 'autre, on a 2!71 = 1. Comme 1 > 1, le cas n = 1 est vrai. (Notons en
passant que le cas n = 0 est vrai.)
e P(n) = P(n+1) : Supposons n! > 2"~1 vrai, et calculons :

P(n)
m+D'=m+1)-n > (n+1)-2""1>2.2n71=2n

ou la derniére inégalité vient du fait que pour n > 1, on a forcément n + 1 > 2 (mais que cette inégalité
n’est pas vraie pour n = 0). L’hérédité est vérifiée.
On a donc bien démontré n! > 2"~! pour tout entier n > 1.
b) Posons P’(n) : n! > 2™.
e P'(4) : D'un coté, on a4l =4-3-2-1 = 24; de Pautre, on a 2* = 16. Comme 24 > 16, le cas n = 4 est
vrai. (Notons en passant que le cas n = 3 est faux.)

e P'(n) = P'(n+1) : Supposons n! > 2™ vrai, et calculons :
P'(n) .
n+Dl=m+1)-n > (n+1)-2">2.2"=2""
ou la derniére étape vient du fait que pour n > 4, on a forcément n + 1 > 2. L’hérédité est vérifiée.
On a donc bien démontré n! > 2™ pour tout entier n > 4.
c) Posons P"(n): > p_ k-k!'=(n+1)! —1.
e P’(1) : D’'un coté, 211621 k-k!=1-11=1; delautre, (1+1)!—=1=2—1=1. Comme 1 = 1, la proposition
P"(1) est démontrée.
e P’(n) = P”(n+1) : Supposons P"(n) vraie, et calculons :
n+1 n prr
Shekt=Skk+n+1) -+ L 4 D=1+ (4 1) (n41)!
k=1 k=1
=1+Mn+1)- n+1)N=-1=mn+2)!-1

L’hérédité est vérifiée.
On a donc bien démontré P”(n) pour tout entier n > 1.

Remarques.

e En a), 'hérédité serait délicate a vérifier si on commencait en n = 0 (puisque n + 1 = 1 # 2). Néanmoins,
n! > 2"~1 est vrai pour n = 0, puis par a) pour n > 1, donc n! > 2”1 est vrai pour tout n € N.

e Si on avait démontré b) avant a), on aurait pu conclure n! > 2" > 2"~! pour tout entier n > 4. En testant
les cas restants n = 1,2,3 :

1! >2° (vrai), 2!>2' (vrai), 3!>2? (vrai),

on aurait aussi pu conclure que n! > 27! est vrai pour tout n € N*.



Exercice 3.
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b) Pour des entiers n,k avec n > k > 1, on a

n n n! n!
<k>+<k—1> DA O TS ]
nt-(n—k+1)+nl-k nl-(n+1)—nl-k+nl-k  (n+1

n—k+D)-k (n+1— k)l &l _< k)'

n
c) La formule du bindme de Newton a été démontrée dans le cours de 1™ année mais avec les coefficients ( k)

définis par récurrence. Dans cet exercice, la méme notation est utilisée pour une définition explicite (il n’est
plus nécessaire d’avoir calculé tous les termes précédents pour obtenir les suivants). Puisque les coefficients
binomiaux définis dans cet exercice prennent les mémes valeurs que ceux définis en 1' année pour k£ = 0 et
k = n pour tout n € N par a), et qu’ils satisfont la méme relation de récurrence par b), les deux définitions,
par récurrence et explicite, déterminent bien les mémes coefficients.

La formule du binéme de Newton est donc aussi(!) démontrée avec les coefficients binomiaux définis ci-dessus.

d) Le coeflicient binomial (Z) correspond au terme a*b" % dans le développement de (a + b)", c’est-a-dire de

(a+b)(a+b)...(a+D).

n termes

On observe que pour obtenir un des termes a*b" % il faut choisir dans ces n parenthéses (a + b), exactement
k fois a (et donc aussi exactement n — k fois b). En énumérant toutes ces possibilités, on obtient exactement
le nombre possible de combinaison de k£ éléments dans un ensemble & n éléments.

En appliquant la formule au cas a = b = 1, on obtient

£0)--

k=0

et donc le nombre de sous-ensembles d’un ensemble & n élément est 2™ ; en effet, on doit additionner toutes
les maniéres de prendre des sous-ensembles a 0 élément parmi n avec toutes les maniéres de prendre des
sous-ensembles & 1 élément parmi n, et ainsi de suite jusqu’a n.

Exercice 4. Au début de la section sur la démonstration par récurrence du cours de 1 année, la formule

~  n(n+1)
S et
k=1

est démontrée. Démontrons maintenant la formule de la somme des cubes, et pour cela, posons

- n?(n +1)2
P(n): Zk3 =——7
k=1

e P(1) : I'expression de gauche est Z;lcﬂ 13 = 1, et celle de droite est M = 1. On a bien “gauche = droite”,
I'initialisation est établie.
n+1 n 2 2
n 1

e P(n) = P(n+1): ;kf” = ;ku (n+1)3 " % +(n+1)>°

n*(n+1)2+4(n+1)*  (n+1)*(n*+4(n+1))

B 4 B 4

_ (n+1)*(n+2)?

- 4

c’est-a-dire ZZ:% k3 = w, qui est bien P(n + 1). L’hérédité est établie.

Ces deux étapes montrent que P(n) est bien vraie pour tout n € N*. En comparant les deux formules de somme,

on obtient I’égalité étonnante
() 3w
k=1 k=1
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Exercice 5. On calcule 15 = 5, 75 + 55 =
naturellement(!)

1 1 1 _ 4 o, 1 4,1 4, 1 _ 4 i
v 15 +ts53+t33=9 15 T35+ 31+ 15 = 5 On conjecture

Wi
Y

n
1 n
P(n): =
(n) kz_:l k(k+1) n+1
que 'on démontre par récurrence comme suit.

e P(1) : notre conjecture a été établie sur P(1), P(2), P(3) et P(4). En particulier, P(1) est vraie.
n+1

1
o P(n) = P(n+1): Zkk—i—l Zk(k+ (n+1)(n+2)
Py n . 1 _ onn+2)+1
T onHl )+ (D +2)
(n+1)?  n+1

S (n+1)(n+2) n+2

c’est-a-dire ZZ:% i 1 qui est bien P(n + 1). L’hérédité est établie.

_ n+1
k+1) = (n+1)+1°
Ces deux étapes montrent que la proposition P(n) est vraie pour tout n € N* (et n’est donc plus une conjecture!).

Exercice 6.

a) Pour I'étude de signe, récrivons f(z) = 22/’:? _ mziﬁ“ _ “’Z;ffl. La valeur interdite de f(z) est z = —1
et ses zéros sont x1 2 = 1;2\/5_
TDS :
-1 T1 T2
?—z—1| + + 0 — 0 +
z+1 — 0 + @ + @ +
/(@) - + 0 -0 +
En particulier, x'(j_f_i_l) —(z+1) > 0siz € [x9; +00[. Comme xo = 1+2\/5 < % = 2, on a bien % >z4+1

pour x € [2;+00].

b) On pose P(n): (2 — 7) > n
e P(2): Comme (2 — 7)2 =2 > % =2 la proposition P(2) est vraie.
e P(n) = P(n+1):0na

n+1 n n P(n a)
2 1 =(2— 1 . Q_L > 2—l . 2(n+1)_ ! (>)n-2n+12n+1
n+1 n+1 n+1 n n+1 n+1 n+1

n+1
Cest-a-dire (2 - #1) >n+1, qui est bien P(n + 1). L’hérédité est établie.

Ces deux étapes montrent que la proposition P(n) est vraie pour tout entier n plus grand ou égal a 2.

Exercice 7. Posons P(n) : il existe k € Z tel que 4™ + 6n — 1 = 9k. Démontrons par récurrence que cette
proposition est vraie pour tout n € N.

e P(0) : On observe que 4° +6-0— 1 =0, qui est égal 4 9-0. La proposition P(0) (avec k = 0) est vraie.
e P(n) = P(n+1):0na

P(n)

A L6 +1) —1=4-4"+6n+5% 4. (4" +6n—1)—3-6n+9 4-9k—18n+9=9(4k — 2n +1)

avec k' =4k —2n+1 € Z car k € Z; la proposition P(n + 1) est vraie si P(n) 'est, et 'hérédité est établie.
Par le principe de récurrence, la proposition P(n) est vraie pour tout n € N.

Exercice 8. Soit ¢ > 0 fixé. Comme lim x, = z, il existe Ny € N tel que |z,, — 2| < § pour tout n > N;. De
méme, comme lim y,, =y, il existe N;L GOIO\T tel que |y, —y| < § pour tout n > Ns.
On pose N := 17;1;;;0{]\71, Ns}, et alors, pour tout n > N, on a

[@a+ ) = @+ 9)| = lan =2 +yn =9l < Jon—al +lyn — 9l < 5 +5 =<

Ainsi, la suite x, + vy, converge bien vers x + y.



Exercice 9.

a) Pour montrer que (, /xn)n cn converge vers v/a, on sera amené a évaluer |, [Tn —\/a | sachant que |x,, — a| est
“petit”. Comme suggéré par 'indication, on calcule

Vi, +va |z, —al - |z, — al

[V VAl | al R - i <

linégalité étant vraie car \/z, > 0 et \/a # 0.
Passons a la démonstration, et posons € > 0. Par hypotheése, il existe N € N tel que |z, — a| < v/a - € pour
tout n > N, et donc

|xn —al  Va-e

[VEn = Val < T < ¢

pour tout n > N, ce qui démontre bien que lim /z, =+asia € R%.
n——+oo

b) Supposons a = 0, et soit £ > 0. Par hypothése, il existe N € N tel que |z, — a| = z,, < €2 pour tout n > N.

Donc
|VEn = Va| = a, <V =

pour tout n > N, et on a bien lirf T, = v/a dans ce cas aussi.
n——+0oo

Exercice 10. Comme I’énoncé le suggére, on détermine ici le plus petit N possible. Mais il devrait étre clair
que si on veut seulement établir la convergence, tout autre entier N plus grand convient aussi.

1 1 1 1
a) E_O <—100 = H<7100 <= n!>100 <= n >5; on prend donc N = 5.
3n 3 —6 1 16n + 8
b) | ——-|= — 1 1 2 insi N =
) YT 4’ '16n+8‘< 00 & > 00 <= 16n > 592 < n > 37, ainsi 38 ici

2
i T > 1000 <= 2n? —1000n+ 1000 > 0. En étudiant le signe de la fonction quadratique

c) z, > 1000 —

f donnée par f(n) = 2n? — 1000n + 1000, on observe qu’elle est positive quand n < 250 — 204/155 2 1 ou
quand n > 250 + 204/155 =2 498.998 ; I'entier N = 499 est donc le plus petit qui convient. Ainsi, pour tout
n > 499 on a x,, > 1000.

Exercice 11.

2n n
a) Soit € > 0 fixé. On doit trouver N € N tel que pour tout n > N,ona | —— —0| <& <— —— <& —
nZ+1 nZ+1
en?—2n+¢e > 0. En étudiant le signe la fonction quadratique f(n) = en?—2n-+¢, on déduit que si n > 71f2“

(on écarte la solution négative), alors f(n) > 0 et donc on a gagné. Ainsi on prendra N = Livl’fﬂj Notons

encore que si 1 — &2 < 0, alors notre N n’est pas bien défini mais remarquons que dans ce cas, la fonction
Vi—e2+41 )
. . - o [Y=E2 sil—e2 >0,
quadratique f(n) est toujours positive et on peut prendre N = 0; ainsi N = €

0 sinon.
. ) . 2n% +1 2
b) Soit e > 0 fixé. On doit trouver N € N tel que pour tout n > N,ona |[-———— — | < ¢ +—
m2+n+5 7
7(2n% + 1) 2(7n2+n+5)‘ ‘ —2n — 3 ’ 2n + 3
— < g < <ée < —F—F——- < & <

7(Tm2+n+5) 7(?2+n+5) 49n2 + Tn + 35 4902 4+ Tn + 35
2n + 3 < £(49n? + Tn + 35) <= 49en? + (7e — 2)n + 35¢ — 3 > 0. Ainsi en raisonnant comme au point
précédent, on obtient

N | V=OBUEPH560etd-Te2 | i 68112 + 560e + 4 > 0,
0 sinon.



