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Exercice 1. Le problème est que P (2) est utilisée implicitement, une proposition clairement fausse. En d’autres
termes : l’initialisation devrait se faire avec P (2).
En effet, récrivons la démonstration proposée de l’hérédité (dont l’idée sera utilisée plus tard en combinatoire)
plus explicitement, en supposant que P (2) est vraie(!). Notons C un ensemble de n + 1 crayons, et formons un
sous-ensemble A de n crayons et un sous-ensemble B de 2 crayons tels que A ∪ B = C. En particulier, A ∩ B
possède un crayon qui, par P (n), est de la même couleur que tous les crayons de A et, par P (2), est de la même
couleur que tous les crayons de B. Donc tous les crayons sont bien de la même couleur que celui de A ∩ B
(remarquons l’importance de P (2), ainsi que de la comparaison de la couleur de chaque crayon à celle du crayon
de référence de A ∩B).

Exercice 2.

a) Posons P (n) : n! ≥ 2n−1

• P (1) : D’un côté, on a 1! = 1 ; de l’autre, on a 21−1 = 1. Comme 1 ≥ 1, le cas n = 1 est vrai. (Notons en
passant que le cas n = 0 est vrai.)

• P (n) =⇒ P (n+ 1) : Supposons n! ≥ 2n−1 vrai, et calculons :

(n+ 1)! = (n+ 1) · n!
P (n)

≥ (n+ 1) · 2n−1 ≥ 2 · 2n−1 = 2n

où la dernière inégalité vient du fait que pour n ≥ 1, on a forcément n + 1 ≥ 2 (mais que cette inégalité
n’est pas vraie pour n = 0). L’hérédité est vérifiée.

On a donc bien démontré n! > 2n−1 pour tout entier n ≥ 1.
b) Posons P ′(n) : n! > 2n.

• P ′(4) : D’un côté, on a 4! = 4 · 3 · 2 · 1 = 24 ; de l’autre, on a 24 = 16. Comme 24 > 16, le cas n = 4 est
vrai. (Notons en passant que le cas n = 3 est faux.)

• P ′(n) =⇒ P ′(n+ 1) : Supposons n! > 2n vrai, et calculons :

(n+ 1)! = (n+ 1) · n!
P ′(n)
> (n+ 1) · 2n > 2 · 2n = 2n+1

où la dernière étape vient du fait que pour n ≥ 4, on a forcément n+ 1 > 2. L’hérédité est vérifiée.
On a donc bien démontré n! > 2n pour tout entier n ≥ 4.

c) Posons P ′′(n) :
∑n

k=1 k · k! = (n+ 1)!− 1.

• P ′′(1) : D’un côté,
∑1

k=1 k ·k! = 1 ·1! = 1 ; de l’autre, (1+1)!−1 = 2−1 = 1. Comme 1 = 1, la proposition
P ′′(1) est démontrée.

• P ′′(n) =⇒ P ′′(n+ 1) : Supposons P ′′(n) vraie, et calculons :

n+1∑
k=1

k · k! =
n∑

k=1

k · k! + (n+ 1) · (n+ 1)!
P ′′(n)
= (n+ 1)!− 1 + (n+ 1) · (n+ 1)!

= (1 + (n+ 1)) · (n+ 1)!− 1 = (n+ 2)!− 1

L’hérédité est vérifiée.
On a donc bien démontré P ′′(n) pour tout entier n ≥ 1.

Remarques.
• En a), l’hérédité serait délicate à vérifier si on commençait en n = 0 (puisque n + 1 = 1 ̸≥ 2). Néanmoins,

n! ≥ 2n−1 est vrai pour n = 0, puis par a) pour n ≥ 1, donc n! ≥ 2n−1 est vrai pour tout n ∈ N.
• Si on avait démontré b) avant a), on aurait pu conclure n! > 2n ≥ 2n−1 pour tout entier n ≥ 4. En testant

les cas restants n = 1, 2, 3 :

1! ≥ 20 (vrai), 2! ≥ 21 (vrai), 3! ≥ 22 (vrai),

on aurait aussi pu conclure que n! ≥ 2n−1 est vrai pour tout n ∈ N∗.
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Exercice 3.

a) On a
(
n

0

)
=

n!

n! · 0!
= 1,

(
n

1

)
=

n!

(n− 1)! · 1!
= n,

(
n

n− 1

)
=

n!

1! · (n− 1)!
= n et

(
n

n

)
=

n!

0! · n!
= 1.

b) Pour des entiers n, k avec n ≥ k ≥ 1, on a(
n

k

)
+

(
n

k − 1

)
=

n!

(n− k)! · k!
+

n!

(n− k + 1)! · (k − 1)!

=
n! · (n− k + 1) + n! · k

(n− k + 1)! · k!
=

n! · (n+ 1)− n! · k + n! · k
(n+ 1− k)! · k!

=

(
n+ 1

k

)
.

c) La formule du binôme de Newton a été démontrée dans le cours de 1re année mais avec les coefficients
(
n

k

)
définis par récurrence. Dans cet exercice, la même notation est utilisée pour une définition explicite (il n’est
plus nécessaire d’avoir calculé tous les termes précédents pour obtenir les suivants). Puisque les coefficients
binomiaux définis dans cet exercice prennent les mêmes valeurs que ceux définis en 1re année pour k = 0 et
k = n pour tout n ∈ N par a), et qu’ils satisfont la même relation de récurrence par b), les deux définitions,
par récurrence et explicite, déterminent bien les mêmes coefficients.
La formule du binôme de Newton est donc aussi( !) démontrée avec les coefficients binomiaux définis ci-dessus.

d) Le coefficient binomial
(
n

k

)
correspond au terme akbn−k dans le développement de (a+ b)n, c’est-à-dire de

(a+ b)(a+ b) . . . (a+ b)︸ ︷︷ ︸
n termes

.

On observe que pour obtenir un des termes akbn−k, il faut choisir dans ces n parenthèses (a+ b), exactement
k fois a (et donc aussi exactement n− k fois b). En énumérant toutes ces possibilités, on obtient exactement
le nombre possible de combinaison de k éléments dans un ensemble à n éléments.
En appliquant la formule au cas a = b = 1, on obtient

n∑
k=0

(
n

k

)
= 2n

et donc le nombre de sous-ensembles d’un ensemble à n élément est 2n ; en effet, on doit additionner toutes
les manières de prendre des sous-ensembles à 0 élément parmi n avec toutes les manières de prendre des
sous-ensembles à 1 élément parmi n, et ainsi de suite jusqu’à n.

Exercice 4. Au début de la section sur la démonstration par récurrence du cours de 1re année, la formule
n∑

k=1

k =
n(n+ 1)

2

est démontrée. Démontrons maintenant la formule de la somme des cubes, et pour cela, posons

P (n) :
n∑

k=1

k3 =
n2(n+ 1)2

4

• P (1) : l’expression de gauche est
∑1

k=1 1
3 = 1, et celle de droite est 12(1+1)2

4 = 1. On a bien “gauche = droite”,
l’initialisation est établie.

• P (n) =⇒ P (n+ 1) :
n+1∑
k=1

k3 =
n∑

k=1

k3 + (n+ 1)3
P (n)
=

n2(n+ 1)2

4
+ (n+ 1)3

=
n2(n+ 1)2 + 4(n+ 1)3

4
=

(n+ 1)2(n2 + 4(n+ 1))

4

=
(n+ 1)2(n+ 2)2

4

c’est-à-dire
∑n+1

k=1 k
3 = (n+1)2((n+1)+1)2

4 , qui est bien P (n+ 1). L’hérédité est établie.
Ces deux étapes montrent que P (n) est bien vraie pour tout n ∈ N∗. En comparant les deux formules de somme,
on obtient l’égalité étonnante (

n∑
k=1

k

)2
=

n∑
k=1

k3
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Exercice 5. On calcule 1
1·2 = 1

2 , 1
1·2 + 1

2·3 = 2
3 , 1

1·2 + 1
2·3 + 1

3·4 = 3
4 , 1

1·2 + 1
2·3 + 1

3·4 + 1
4·5 = 4

5 . On conjecture
naturellement( !)

P (n) :
n∑

k=1

1

k(k + 1)
=

n

n+ 1

que l’on démontre par récurrence comme suit.
• P (1) : notre conjecture a été établie sur P (1), P (2), P (3) et P (4). En particulier, P (1) est vraie.

• P (n) =⇒ P (n+ 1) :
n+1∑
k=1

1

k(k + 1)
=

n∑
k=1

1

k(k + 1)
+

1

(n+ 1)(n+ 2)

P (n)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
=

n(n+ 2) + 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)
=

n+ 1

n+ 2

c’est-à-dire
∑n+1

k=1
1

k(k+1) =
n+1

(n+1)+1 , qui est bien P (n+ 1). L’hérédité est établie.

Ces deux étapes montrent que la proposition P (n) est vraie pour tout n ∈ N∗ (et n’est donc plus une conjecture !).

Exercice 6.
a) Pour l’étude de signe, récrivons f(x) = 2x2+x

x+1 − x2+2x+1
x+1 = x2−x−1

x+1 . La valeur interdite de f(x) est x = −1

et ses zéros sont x1,2 = 1∓
√
5

2 .
TDS :

x2 − x− 1

x + 1

f(x)

−1 x1 x2

+ + 0 − 0 +

− 0 + + +

− + 0 − 0 +

En particulier, x·(2x+1)
x+1 −(x+1) ≥ 0 si x ∈ [x2; +∞[. Comme x2 = 1+

√
5

2 < 1+3
2 = 2, on a bien x·(2x+1)

x+1 ≥ x+1
pour x ∈ [2; +∞[.

b) On pose P (n) :
(
2− 1

n

)n
> n.

• P (2) : Comme
(
2− 1

2

)2
= 9

4 > 8
4 = 2, la proposition P (2) est vraie.

• P (n) =⇒ P (n+ 1) : On a(
2− 1

n+ 1

)n+1

=

(
2− 1

n+ 1

)n
·
(
2− 1

n+ 1

)
>

(
2− 1

n

)n
·
(
2(n+ 1)

n+ 1
− 1

n+ 1

)
P (n)
> n · 2n+ 1

n+ 1

a)
≥ n+1

c’est-à-dire
(
2− 1

n+1

)n+1

> n+ 1, qui est bien P (n+ 1). L’hérédité est établie.

Ces deux étapes montrent que la proposition P (n) est vraie pour tout entier n plus grand ou égal à 2.

Exercice 7. Posons P (n) : il existe k ∈ Z tel que 4n + 6n − 1 = 9k. Démontrons par récurrence que cette
proposition est vraie pour tout n ∈ N.
• P (0) : On observe que 40 + 6 · 0− 1 = 0, qui est égal à 9 · 0. La proposition P (0) (avec k = 0) est vraie.
• P (n) =⇒ P (n+ 1) : On a

4n+1 + 6(n+ 1)− 1 = 4 · 4n + 6n+ 5
idée
= 4 · (4n + 6n− 1)− 3 · 6n+ 9

P (n)
= 4 · 9k − 18n+ 9 = 9(4k − 2n+ 1)

avec k′ = 4k − 2n+ 1 ∈ Z car k ∈ Z ; la proposition P (n+ 1) est vraie si P (n) l’est, et l’hérédité est établie.
Par le principe de récurrence, la proposition P (n) est vraie pour tout n ∈ N.

Exercice 8. Soit ε > 0 fixé. Comme lim
n→∞

xn = x, il existe N1 ∈ N tel que |xn − x| < ε
2 pour tout n ≥ N1. De

même, comme lim
n→∞

yn = y, il existe N2 ∈ N tel que |yn − y| < ε
2 pour tout n ≥ N2.

On pose N := max{N1, N2}, et alors, pour tout n ≥ N , on a

|(xn + yn)− (x+ y)| = |xn − x+ yn − y| ≤ |xn − x|+ |yn − y| < ε

2
+

ε

2
= ε

Ainsi, la suite xn + yn converge bien vers x+ y.
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Exercice 9.
a) Pour montrer que

(√
xn

)
n∈N converge vers

√
a, on sera amené à évaluer

∣∣√xn −
√
a
∣∣ sachant que |xn − a| est

“petit”. Comme suggéré par l’indication, on calcule

∣∣√xn −
√
a
∣∣ astuce !

=
∣∣√xn −

√
a
∣∣ · √xn +

√
a

√
xn +

√
a
=

|xn − a|
√
xn +

√
a
≤ |xn − a|√

a

l’inégalité étant vraie car
√
xn ≥ 0 et

√
a ̸= 0.

Passons à la démonstration, et posons ε > 0. Par hypothèse, il existe N ∈ N tel que |xn − a| <
√
a · ε pour

tout n ≥ N , et donc ∣∣√xn −
√
a
∣∣ ≤ |xn − a|√

a
<

√
a · ε√
a

= ε

pour tout n ≥ N , ce qui démontre bien que lim
n→+∞

√
xn =

√
a si a ∈ R∗

+.

b) Supposons a = 0, et soit ε > 0. Par hypothèse, il existe N ∈ N tel que |xn − a| = xn < ε2 pour tout n ≥ N .
Donc ∣∣√xn −

√
a
∣∣ = √

xn <
√
ε2 = ε

pour tout n ≥ N , et on a bien lim
n→+∞

√
xn =

√
a dans ce cas aussi.

Exercice 10. Comme l’énoncé le suggère, on détermine ici le plus petit N possible. Mais il devrait être clair
que si on veut seulement établir la convergence, tout autre entier N plus grand convient aussi.

a)
∣∣∣∣ 1n! − 0

∣∣∣∣ < 1

100
⇐⇒ 1

n!
<

1

100
⇐⇒ n! > 100 ⇐⇒ n ≥ 5 ; on prend donc N = 5.

b)
∣∣∣∣ 3n

4n+ 2
− 3

4

∣∣∣∣ = ∣∣∣∣ −6

16n+ 8

∣∣∣∣ < 1

100
⇐⇒ 16n+ 8

6
> 100 ⇐⇒ 16n > 592 ⇐⇒ n > 37, ainsi N = 38 ici.

c) xn ≥ 1000 ⇐⇒ 2n2

n− 1
≥ 1000 ⇐⇒ 2n2−1000n+1000 ≥ 0. En étudiant le signe de la fonction quadratique

f donnée par f(n) = 2n2 − 1000n + 1000, on observe qu’elle est positive quand n < 250 − 20
√
155 ∼= 1 ou

quand n > 250 + 20
√
155 ∼= 498.998 ; l’entier N = 499 est donc le plus petit qui convient. Ainsi, pour tout

n ≥ 499 on a xn ≥ 1000.

Exercice 11.

a) Soit ε > 0 fixé. On doit trouver N ∈ N tel que pour tout n ≥ N , on a
∣∣∣∣ 2n

n2 + 1
− 0

∣∣∣∣ < ε ⇐⇒ 2n

n2 + 1
< ε ⇐⇒

εn2−2n+ε > 0. En étudiant le signe la fonction quadratique f(n) = εn2−2n+ε, on déduit que si n >
√
1−ε2+1

ε

(on écarte la solution négative), alors f(n) > 0 et donc on a gagné. Ainsi on prendra N = ⌊
√
1−ε2+1

ε ⌋. Notons
encore que si 1 − ε2 < 0, alors notre N n’est pas bien défini mais remarquons que dans ce cas, la fonction

quadratique f(n) est toujours positive et on peut prendre N = 0 ; ainsi N =

{
⌊
√
1−ε2+1

ε ⌋ si 1− ε2 ≥ 0,

0 sinon.

b) Soit ε > 0 fixé. On doit trouver N ∈ N tel que pour tout n ≥ N , on a
∣∣∣∣ 2n2 + 1

7n2 + n+ 5
− 2

7

∣∣∣∣ < ε ⇐⇒∣∣∣∣ 7(2n2 + 1)

7(7n2 + n+ 5)
− 2(7n2 + n+ 5)

7(7n2 + n+ 5)

∣∣∣∣ < ε ⇐⇒
∣∣∣∣ −2n− 3

49n2 + 7n+ 35

∣∣∣∣ < ε ⇐⇒ 2n+ 3

49n2 + 7n+ 35
< ε ⇐⇒

2n + 3 < ε(49n2 + 7n + 35) ⇐⇒ 49εn2 + (7ε − 2)n + 35ε − 3 > 0. Ainsi en raisonnant comme au point
précédent, on obtient

N =

{
⌊
√
−6811ε2+560ε+4−7ε+2

98ε ⌋ si − 6811ε2 + 560ε+ 4 ≥ 0,

0 sinon.
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