
VI. Calcul du rang et systèmes d’équations

Nous avons fait connaissance la semaine passée avec les matrices élémentaires de trois types.

Lors de multiplication à gauche avec l’une de ces matrices, on e!ectue des opérations élémentaires

sur les lignes. Nous allons voir comment un usage systématique de ces opérations permet de calculer

le rang d’une application linéaire et de résoudre des systèmes d’équations linéaires.

1 Changement de base

Soit ω : V → W une application linéaire entre deux espaces vectoriels de dimension finie. Pour

comprendre ω, nous avons vu que nous pouvons choisir une base B = (e1, . . . , em) de V et une base

C = (f1, . . . , fn) de W afin de construire la matrice A = (ω)CB. Il su"t alors d’étudier la matrice

A. Par exemple, ω est un isomorphisme si et seulement si A est une matrice inversible.

Mais que se passe-t-il si nous choisissons d’autres bases ? Un autre choix peut valoir la peine si la

forme de la matrice se simplifie et rend la nature de l’application plus lisible...

Définition 1.1. Soit B = (e1, . . . , em) et B→ = (e→1, . . . , e
→
m) deux bases de V . Alors la matrice

P = (IdV )B
→

B de l’application linéaire identité où l’on fixe la base B au départ et B→
à l’arrivée

s’appelle la matrice de changement de base de B à B→
.

Proposition 1.2. Une matrice P ↑ Mm(K) est une matrice de changement de base si et seulement
si elle est inversible.

Démonstration. Une matrice de changement de base (IdV )B
→

B est inversible puisque son inverse est

la matrice
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Réciproquement, si P est inversible, cela signifie que son rang vaut m, ou encore que son image

est de dimension m.

En particulier, si B = (e1, . . . , em) est la base canonique de Km
, choisissons e→j =

∑
pijei.

Les e→j forment une base B→
de Km

. On interprète alors P comme matrice de l’application linéaire

identité de Km
muni de la base B→

dans Km
muni de la base canonique. En e!et, l’image de e→j se

lit dans la j-ème colonne : ses coordonnées dans la base canonique sont (p1j, . . . , pmj).

Exemple 1.3. La matrice P =

(
1 3

↓3 1

)
est inversible puisque ses colonnes sont des

Une autre façon de le voir serait de constater que la seule solution au système

{
x + 3y = 0

↓3x + y = 0
est

Choisissons donc e→1 =

(
1

↓3

)
et e→2 =

(
3

1

)
pour former une nouvelle base B→ = (e1, e2).

Alors la matrice de l’identité de la base B→
à la base canonique est formée de la façon suivante :

Ses colonnes sont formées des composantes des vecteurs de la base B→
dans la base canonique car
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2 Le rang-colonne d’une matrice

Lorsqu’on souhaite calculer le rang de ω, c’est-à-dire la dimension de l’image (puis en déduire la

dimension du noyau par le théorème du rang), nous pouvons choisir des bases des espaces vectoriels

de départ et d’arrivée, calculer la matrice de ω par rapport à ces deux bases et observer les colonnes

de cette matrice.

Définition 2.1. Soit A une matrice de Mn↑m(K). Le rang-colonne de A est la dimension du

sous-espace vectoriel de Kn
engendré par les vecteurs colonnes




a1i
...

ani



 pour 1 ↔ i ↔ m.

Le rang-ligne de A est la dimension du sous-espace vectoriel de Km
engendré par les vecteurs lignes

(aj1 . . . ajm) pour 1 ↔ j ↔ n.

L’un des grands résultats du jour est que ces deux rangs sont égaux ! Avant de démontrer ce

théorème, nous allons nous concentrer sur la signification géométrique du rang-colonne.

Considérons la matrice A comme celle d’une application linéaire ω : Km → Kn
qui envoie les

vecteurs de la base canonique sur les vecteurs colonnes donnés par les colonnes de la matrice A.

Concrètement,

ω(ei) =




a1i
...

ani



 .

Ainsi, les colonnes de la matrice A sont les images des vecteurs de la base canonique de Km
, et

par conséquent, engendrent l’image de ω. En e!et,

Nous avons donc montré le résultat suivant :

Proposition 2.2. Soient V et W deux K-espaces vectoriels de dimension finie, B = (e1, . . . , em)

une base de V et C = (f1, . . . , fn) une base de W . Soit ω : V → W une application linéaire et
A = (ω)CB. Alors le rang de ω est égal au rang-colonne de A.
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Exemple 2.3. Quel est le rang de l’application linéaire ω : F3
2 → F3

2 donnée par la matrice

P =




1 0 1

1 1 0

0 1 1



 ↑ M3(F2)

par rapport à la base canonique ?

On constate que

3 Matrices équivalentes

Nous pouvons nous permettre une certaine souplesse à l’heure de construire la matrice de

ω. Choisissons en e!et deux bases B = (e1, . . . , em) et B→ = (e→1, . . . , e
→
m) de V et deux autres

C = (f1, . . . , fn) et C → = (f →
1, . . . , f

→
n) de W . Nous pouvons alors construire deux matrices qui

représentent l’application linéaire ω, la matrice A = (ω)CB et B = (ω)C
→

B→ . On peut obtenir l’une à

partir de l’autre en utilisant les matrices de changement de base Q = (Id)B
→

B et P = (Id)CC→ . En

e!et, le diagramme

Définition 3.1. Deux matrices A et B de Mn↑m(K) sont équivalentes et on note A ↗ B s’il existe

deux matrices inversibles P ↑ GLn(K) et Q ↑ GLm(K) telles que A = PBQ.

Théorème 3.2. Deux matrices A et B de Mn↑m(K) sont équivalentes si et seulement elles repré-
sentent la même application linéaire ω : Km → Kn.

Démonstration. Si A et B représentent ω par rapport à des bases di!érentes, nous avons vu ci-

dessus que A et B sont équivalentes via des matrices P et Q de changement de base.
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Supposons maintenant que A ↗ B et considérons les matrices inversibles P et Q comme des

matrices de changement de base, Q de la base B à la base B→
de Km

et P de la base C →
à la base

C de Kn
. Alors, si A est la matrice d’une application linéaire ω exprimée par rapport aux bases B

et C, B est la matrice de cette même application ω par rapport aux nouvelles bases B→
et C →

Corollaire 3.3. Si A ↗ B, alors A et B ont le même rang-colonne.

Démonstration.

Exemple 3.4. Considérons l’application linéaire ω : C3 → C3
définie par

ω(x; y; z) = (x+ iy + (1↓ i)z; ix+ y + (1 + i)z; (1 + i)x+ (1 + i)y + 2z).

Quel est son rang ?

La matrice de ω par rapport aux bases canoniques est

Théorème 3.5. Soit A une matrice de Mn↑m(K). Les rangs ligne et colonne de A sont égaux.
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Démonstration. Soit Q ↑ GLn(K). Nous venons de démontrer que le rang-colonne de A et QA est

le même car ces matrices sont équivalentes. Regardons les lignes lj = (aj1 . . . ajm) de A.

Si le rang-ligne vaut k, cela signifie qu’il existe k lignes linéairement indépendantes et que toutes les

autres peuvent s’exprimer comme combinaison linéaire de celles-ci. Quitte à multiplier A à gauche

par des matrices Pij (inversibles, donc le rang-colonne ne change pas !), nous pouvons supposer

qu’il s’agit des k premières lignes. Les autres s’expriment comme ls = εs1l1+ · · ·+εsklk pour s > k.

Multiplions alors A par Es1(↓εs1) · · ·Esk(↓εsk) pour obtenir une matrice de la forme





a11 a12 · · · a1m
...

...
...

ak1 ak2 · · · akm
0 0 · · · 0

0 0 · · · 0




.

Soit r1 le numéro de la première colonne de notre matrice qui possède un coe"cient non-nul.

Quitte à échanger des lignes comme auparavant, nous pouvons supposer que ce coe"cient est dans

la première ligne, c’est a1r1 . On multiplie la matrice par D1(a
↓1
1r1) pour que ce coe"cient soit égal

à 1. En multipliant la matrice par E21(↓a2r1) · · ·Ek1(↓akr1), on garde le même rang-colonne, mais

on obtient des zéros dans toute la r1-ème colonne ; dans la matrice suivante r1 = 2 :




0 1 a13 · · · a1m
0 0 a23 · · · a2m
...

...
...

0 0 ak3 · · · akm
0 0 · · · · · · 0

0 0 · · · · · · 0





.

On procède de la même façon en ne travaillant que sur les lignes 2 à k, puis les lignes 3 à k,

etc. en e!ectuant des opérations élémentaires à chaque pas pour obtenir des zéros sous le premier

coe"cient non nul de chaque ligne qui vaudra 1. On obtient ainsi une matrice de même rang que

A en n’ayant e!ectué des opérations élémentaires que sur les lignes et qui a la forme suivante :





0 1 a13 a14 a15 · · · · · · a1m
0 0 0 1 a25 · · · · · · a2m
0 0 0 0 1 a36 · · · a3m
...

...
...

...
...

0 0 · · · 0 · · · 1 akm
0 0 · · · · · · · · · · · · 0

0 0 · · · · · · · · · · · · 0





.
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Le rang-ligne de cette matrice vaut k et son rang-colonne, qui est le rang-colonne de la matrice

équivalente A, vaut k également. En e!et, les k colonnes qui contiennent l’un des coe"cients égal

à 1 par lequel commence une ligne de la matrice sont linéairement indépendantes et engendrent

toutes les colonnes de la matrice.

4 Echelonner et réduire

La méthode que nous avons utilisée dans la démonstration ci-dessus consiste à "échelonner" la

matrice, les échelons étant les 1 que nous avons introduits petit à petit.

Définition 4.1. Une matrice A = (aij)1↔i↔n;1↔j↔m ↑ Mn↑m(K) est échelonnée s’il existe une suite

strictement croissante r1 < r2 < · · · < rk telle que aij = 0 si j < ri ou i > k et airi ↘= 0. Dans ce

cas elle est réduite si airi = 1 et ajri = 0 si j ↘= i.

Nous avons donc démontré que l’on peut échelonner et réduire une matrice en e!ectuant des

opérations élémentaires sur les lignes de cette matrice. Ce procédé s’appelle la méthode de Gauss.

Exemple 4.2. Echelonnons et réduisons la matrice





1 1 0 ↓1

0 1 2 3

1 3 4 5

2 3 2 1




.

Nous indiquerons à chaque opération quelle matrice élémentaire on utilise.
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Pour terminer, appliquons cette méthode à la résolution d’un système d’équations linéaires.

On écrit ce système sous la forme AX = b, où X =




x1
...

xm



 est le vecteur colonne des inconnues,

A ↑ Mn↑m(K) est la matrice des coe"cients et b =




b1
...

bn



.

La méthode de Gauss consiste à e!ectuer des opérations élémentaires sur les lignes de la matrice

A augmentée de b, que l’on écrit (A | b), pour l’échelonner et la réduire. Il est très dangereux

d’e!ectuer des opérations sur les colonnes car cela revient à mélanger les inconnues !

Exemple 4.3. Nous voulons résoudre le système d’équations






x + y = ↓1

y + 2z = 3

x + 3y + 4z = 5

2x + 3y + 2z = 1

La matrice augmentée de ce système est
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