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VI. Calcul du rang et systemes d’équations

Nous avons fait connaissance la semaine passée avec les matrices élémentaires de trois types.
Lors de multiplication & gauche avec I'une de ces matrices, on effectue des opérations élémentaires
sur les lignes. Nous allons voir comment un usage systématique de ces opérations permet de calculer

le rang d’une application linéaire et de résoudre des systémes d’équations linéaires.

1 Changement de base

Soit v : V' — W une application linéaire entre deux espaces vectoriels de dimension finie. Pour
comprendre o, nous avons vu que nous pouvons choisir une base B = (ey, ..., e,;) de V et une base
C=(f1,..., fn) de W afin de construire la matrice A = («)%. Il suffit alors d’étudier la matrice
A. Par exemple, « est un isomorphisme si et seulement si A est une matrice inversible.

Mais que se passe-t-il si nous choisissons d’autres bases? Un autre choix peut valoir la peine si la

forme de la matrice se simplifie et rend la nature de I'application plus lisible...

Définition 1.1. Soit B = (e1,...,¢e,) et B = (e],...,¢,) deux bases de V. Alors la matrice
P = (I dv)g, de 'application linéaire identité ou l'on fixe la base B au départ et B’ a larrivée

s’appelle la matrice de changement de base de B a B3'.

Proposition 1.2. Une matrice P € M,,(K) est une matrice de changement de base si et seulement

st elle est inversible.

Démonstration. Une matrice de changement de base (Idy )3 est inversible puisque son inverse est

la matrice (Io\\,)%, w\o»\ULL do c‘e\auéumwQ de bose do B' a B
1. ©

Bn ok (T \Z;(IAV)E' - T, = (0% pege

(v,8) [T, (v,8") T (v;8)
\

7

T L, - (T,
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Réciproquement, si P est inversible, cela signifie que son rang vaut m, ou encore que son image
est de dimension m.
En particulier, si B = (ey, ..., en) est la base canonique de K™, choisissons € =} p;;e;.
Les ¢} forment une base B’ de K™. On interpréte alors P comme matrice de 'application linéaire
identité de K™ muni de la base B’ dans K™ muni de la base canonique. En effet, I'image de e;- se

lit dans la j-éme colonne : ses coordonnées dans la base canonique sont (pij, ..., Pm;)- O

1 3
Exemple 1.3. La matrice P = ( ) est inversible puisque ses colonnes sont des

c'\w‘*“ Q'(V‘{MMWM\r i\n&x‘)w&aulﬁ (‘]O'L(A/Lo\.wlf wue bose de lR

. . r + 3y = 0 -
Une autre fagon de le voir serait de constater que la seule solution au systéme { Y 0 =) PX- 0

est O 1 O) Sowe Kec PB %OB b[' fauaa(P) 2 —3r + y =

1 3
Choisissons donc €] = et e) = pour former une nouvelle base B’ = (e{, 6/2).
1 3 2 1

Alors la matrice de I'identité de la base B’ a la base canonique est formée de la fagon suivante :

Ses colonnes sont formées des composantes des vecteurs de la base B’ dans la base canonique car

doe(o ) Adwod = Pers(£3) (5], [4)
Ox (_1) ssuk e CourpOSAUTE) de ?,(1 bows In bese Cauohiziue.
De meme elz:<(3>B, =7 P(:)z(ﬂ e, s e+ e,

(la W\&\-IU‘CL werse  de P @(f \a vvm\'rl‘UL he \ma.sa\:a,e_ de |a Iaa.ya

CO.MDvutquL B < b base BI_

Clodows 97 . GEP =44-(2)3 =10
o Pt A (103

A» ol F = —I_o- ( .

3 4 oy .'..(

\/\’/r‘lc\‘ows o Occw\p\z, 9_4:(?) a P (o):(o
3
1

r [
:5 Q,] % -4‘€~1+ 3e2>;2

\_/
@—
I
Vv 5

n

o =~
-
—
c,-'a‘\
~————
(VaS)

—f—
S
_——
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2 Le rang-colonne d’une matrice

Lorsqu’on souhaite calculer le rang de «, c’est-a-dire la dimension de I'image (puis en déduire la
dimension du noyau par le théoréme du rang), nous pouvons choisir des bases des espaces vectoriels
de départ et d’arrivée, calculer la matrice de a par rapport a ces deux bases et observer les colonnes

de cette matrice.

Définition 2.1. Soit A une matrice de M, x,,(K). Le rang-colonne de A est la dimension du
ai;

sous-espace vectoriel de K™ engendré par les vecteurs colonnes : pour 1 <i < m.
Ani

Le rang-ligne de A est la dimension du sous-espace vectoriel de K™ engendré par les vecteurs lignes

(@1 ... ajm) pour 1 < j<mn.

L’un des grands résultats du jour est que ces deux rangs sont égaux! Avant de démontrer ce
théoréme, nous allons nous concentrer sur la signification géométrique du rang-colonne.
Considérons la matrice A comme celle d'une application linéaire o : K™ — K" qui envoie les
vecteurs de la base canonique sur les vecteurs colonnes donnés par les colonnes de la matrice A.
Concrétement,

a1;
ale;) =
(027
Ainsi, les colonnes de la matrice A sont les images des vecteurs de la base canonique de K™, et

par conséquent, engendrent 'image de «. En effet,

toul vedus W € IM(O(\) et “Q]ilmwae, o((\/) d'un vu,l’w v € km
OY‘ ) V = Z’i ‘>\L(’.;’ = W:d\(\/):ol(iix;e_,;)‘__ Z >\E d\(ec>

‘I:vl
r
A Untaie

A\v\Si ,Qw (o f)o.s&w(ls &L W SowL des wmbx'nu“_som P anes
&as C_o\ovw\ts de A

Nous avons donc montré le résultat suivant :

Proposition 2.2. Soient V et W deuz K -espaces vectoriels de dimension finie, B = (e1,...,en)
une base de V et C = (f1,..., fn) une base de W. Soit o« : V. — W une application linéaire et

A= (a)§. Alors le rang de o est égal au rang-colonne de A. [
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Exemple 2.3. Quel est le rang de 'application linéaire o : F3 — F3 donnée par la matrice

P = c M3(F2)

[ RS
— = O
[EEE o R

par rapport a la base canonique ?

On constate que Qu Aluw V\—cwu.{.r/u w\othc.s &L ? SOWL Ir[W{JM"Cma»['
™ éf.‘m/u&&mth = 'Q,e, ) wlowr, do T Ve Ouc wasind 2
AN [ ) - C +C
fD_Q P\M.A C’f 9] ”‘: ( 40 B + ( 2 c 1 2

doauns ﬂ:,_ Ay A= O --.

’Donc \L f‘fbwa Lo\ovwl,( du ? '\rau," 2 . Sow ravxs QﬁZM OUAAST .-
3 Matrices équivalentes

Nous pouvons nous permettre une certaine souplesse a I'’heure de construire la matrice de
a. Choisissons en effet deux bases B = (e1,...,e,) et B = (€},...,¢e,,) de V et deux autres
C = (fi,...,fu) et C" = (f],...,[f)) de W. Nous pouvons alors construire deux matrices qui
représentent I’application linéaire «, la matrice A = (a)§ et B = (a)§. On peut obtenir 'une &
partir de autre en utilisant les matrices de changement de base Q = (Id)8 et P = (Id)S,. En

effet, le diagramme

(v)rz))L(v.,B’)%(w; c') P, (ch)

oL
lwshe 4 6ol mahindle A= P-B-Q
Définition 3.1. Deux matrices A et B de M., (K) sont équivalentes et on note A ~ B s'il existe
deux matrices inversibles P € GL,(K) et Q € GL,,(K) telles que A = PBQ.

Théoréme 3.2. Deux matrices A et B de M,,x.,(K) sont équivalentes si et seulement elles repré-

sentent la méme application linéaire o : K™ — K.

Démonstration. Si A et B représentent « par rapport a des bases différentes, nous avons vu ci-

dessus que A et B sont équivalentes via des matrices P et () de changement de base.
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Supposons maintenant que A ~ B et considérons les matrices inversibles P et () comme des
matrices de changement de base, () de la base B a la base B’ de K™ et P de la base C" & la base
C de K™. Alors, si A est la matrice d’'une application linéaire o exprimée par rapport aux bases B

et C, B est la matrice de cette méme application « par rapport aux nouvelles bases B et C' [
Corollaire 3.3. Si A ~ B, alors A et B ont le méme rang-colonne.

Démonstration.
C@wwvu, A ®l’ B wamP /Ln.p-ﬁ&w_lu '[)a w\;ma &ﬁo‘?/«.u\L.ow
‘Q/éwiouém CN a\ors qu.t {wa,a co\okue, Vm,J \ro.wa(&\,

Exemple 3.4. Considérons I'application linéaire o : C* — C3 définie par
a(n;y; 2) = (@+ iy + @=9) 2502 + y + @F%)2; (1 + i) + (1 + i)y +2=).

Quel est son rang? ) y T

La matrice de a par rapport aux bases canoniques est A = L 4 Axr o
A A+L @

(Lz m.v\cé n' os(' ‘X;A ﬁmvv\éd/&\'e,mmp vtailg\e .

“w\\-tp\t‘om A s 6ow\£m o EB,L (“‘ ) e B3 (“'1> pour

Sows Froure oy 2 pmw&u QABM o~ [-0— 3C

A ¢ A-¢
Eaz("w‘ Esx(“’L)‘A = '; «(t) 4:}-1 = B

Cb‘”vww QA—S ijrvv‘tu é&ﬁmw{'amw _S"QV»L' [wvu-sc'lotﬂ-g J AN B

e(/ owl’ donc (L m et roing colonue .

On Vb\\ Cla/klvt_mc_wb quct. QL va-a Co\ovch_ (L; 8 \fam,l’ 2 eve

Sownn Yo QA&V\L ls VU LY G

Théoréme 3.5. Soit A une matrice de M., (K). Les rangs ligne et colonne de A sont égau.
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Démonstration. Soit Q) € GL,,(K). Nous venons de démontrer que le rang-colonne de A et QA est
le méme car ces matrices sont équivalentes. Regardons les lignes {; = (a;1 ... a;,) de A.

Si le rang-ligne vaut k, cela signifie qu’il existe k lignes linéairement indépendantes et que toutes les
autres peuvent s’exprimer comme combinaison linéaire de celles-ci. Quitte a multiplier A a gauche
par des matrices P;; (inversibles, donc le rang-colonne ne change pas!), nous pouvons supposer
qu’il s’agit des k premiéres lignes. Les autres s’expriment comme [, = Agyly +- - -+ Al pour s > k.

Multiplions alors A par Eg(—As1) - -+ Esg(—Asx) pour obtenir une matrice de la forme

@11 Q12 - Qim
g1 Qg2 - Akm
0 0o --- 0
0 o --. 0

Soit 71 le numéro de la premiére colonne de notre matrice qui posséde un coefficient non-nul.

Quitte a échanger des lignes comme auparavant, nous pouvons supposer que ce coefficient est dans
N . 5 SR . -1 . A

la premiére ligne, c’est ai,,. On multiplie la matrice par D;(ay,,) pour que ce coefficient soit égal

a 1. En multipliant la matrice par Fy;(—aso,, ) -+ - Ex1(—ag. ), on garde le méme rang-colonne, mais

on obtient des zéros dans toute la r;-éme colonne ; dans la matrice suivante ry = 2 :

01 a3z -+ aip
0 0 axg -+ agnm
0 0 aks -+ Gkm
00 - -~ 0
00 --- --- 0

On proceéde de la méme fagon en ne travaillant que sur les lignes 2 a k, puis les lignes 3 a k,
etc. en effectuant des opérations élémentaires a chaque pas pour obtenir des zéros sous le premier
coefficient non nul de chaque ligne qui vaudra 1. On obtient ainsi une matrice de méme rang que

A en n’ayant effectué des opérations élémentaires que sur les lignes et qui a la forme suivante :
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Le rang-ligne de cette matrice vaut k£ et son rang-colonne, qui est le rang-colonne de la matrice
équivalente A, vaut k également. En effet, les k£ colonnes qui contiennent I'un des coefficients égal
a 1 par lequel commence une ligne de la matrice sont linéairement indépendantes et engendrent

toutes les colonnes de la matrice. OJ

4 FEchelonner et réduire

La méthode que nous avons utilisée dans la démonstration ci-dessus consiste a "échelonner" la

matrice, les échelons étant les 1 que nous avons introduits petit & petit.

Définition 4.1. Une matrice A = (a;;)1<i<ni<j<m € Muxm(K) est échelonnée 8’1l existe une suite
strictement croissante r < 7y < --- < 7y, telle que a;; = 0si 7 < r; oui > k et a;, # 0. Dans ce

cas elle est réduite si a;,, =1 et aj,, = 0 si j # 1.

Nous avons donc démontré que l'on peut échelonner et réduire une matrice en effectuant des

opérations élémentaires sur les lignes de cette matrice. Ce procédé s’appelle la méthode de Gauss.

)1 0 —1

. . 1 2 3

Exemple 4.2. Echelonnons et réduisons la matrice 3 4 &
23 2 1

Nous indiquerons & chaque opération quelle matrice élémentaire on utilise.

B a6 5z | Bal)Ex(2) @ 4

RN @
(V)
o

l

o

A
[
v}

(V)
O
©

ll(l Vh&\f\kc& sk eo\'w\ovmé,e.. Redossoms - lo

EA')_(QI) ‘Qe \m.ub ‘&'%V\L =
—

Qe oy de loe mahice =

o -2 -4
A A 3 Q@_ ‘ro\.mca Lolot/\vte_ =
$] © ©O
o o O

QO C s
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Pour terminer, appliquons cette méthode a la résolution d’un systéme d’équations linéaires.

Zy
On écrit ce systéme sous la forme AX = b, ou X = est le vecteur colonne des inconnues,
LT,
b
A € Myym(K) est la matrice des coefficients et b =
bn

La méthode de Gauss consiste a effectuer des opérations élémentaires sur les lignes de la matrice

A augmentée de b, que l'on écrit (A|b), pour I’échelonner et la réduire. Il est trés dangereux
d’effectuer des opérations sur les colonnes car cela revient & mélanger les inconnues !

Exemple 4.3. Nous voulons résoudre le systéme d’équations

T + Yy = -1
y + 2z =
r + 3y + 42 = 5
2 + 3y + 22 = 1
A 4 o -l
i ' : - 4 203
La matrice augmentée de ce systéme est M = (/11) 3 Lf i‘ 5
2 3 2 4
4 06 -2 ' -4
I ] -
C e ul\nh\txwp(blf-z M~ 8;?5‘,3~
O o 9 o)
N LO(FC,-SWD\M&. Our 3‘33%&/\42_ A( éqw\ﬂom&
- X = ~ Lf +2¢
X -2z = LI (::b L .
Yy +le = 3 y -
y S L{ou
OV\ FOJ-Q. ¢ = >\ ) >\ E IK f/\’ ow o[O(/\LA»If LU $ QAA— J
_Y Z ' 3
t; c 3 + >\ -2 c‘w, (_.5} une Acorle C&e- R
2 O 4



