Markov Chains and Algorithmic Applications EPFL - Fall Semester 2025-2026
Final Exam Solutions

Exercise 1.

a) The transition probabilities are as follows:

1 .
Po4+1=DPo-1=5, Poj = 0 Vjd&{-1,+1}

and for ¢ # 0, we have

1 . .
Pi2i = Pio =55 Pij = 0 Vj¢&{0,2i}

b) As there are only two ways to come back to state 0 in n > 2 steps (either via the negative
numbers, or via the positive numbers), we obtain:

; n 11
foo' =0 and fig) =2 =

for n>2
n—1

c) Part b) implies that

Joo = Zfén) = Z 2n1_1 =1

n>1 n>2

so state 0 is recurrent.

d) The set of states S = {0, 2%, k > 0} forms a single recurrent class. All other states in Z are
transient (as for each such state, there is a positive probability (actually a probability 1) of no
coming back).

e) Solving the equation m = 7 P gives m; = 0 for all i ¢ S and :

1 1 1
7T_2k+1 = 5 7T_2k, m_1 = 5 o = 7T+1, 7T+2k+1 = 5 7T+2k
for every k > 0, so
1
T_ok = 7T+2k = Wﬂ'o
and
1 1
™0 1+2 Z W =1 so T = g
k>0
implying
= 11 Yk >0
7T_2k—7T+2k—§2kﬁ -

f) No, detailed balance is not satisfied, as there is for example a non-zero probability to go from
state +1 to state +2, but no probability to go in the reverse direction.

g) Yes, 7 is also a limiting distribution, as the chain is aperiodic (the probability to come back to
state 0 in n steps is strictly positive for every n > 2).



Exercise 2.

a) The transition matrix of the chain (with the ordering of the states S = {a,b,c}, as in the
problem set) is given by:

0 1/2 1/2
P=1{1/5 2/5 2/5
1/3 2/3 0

This chain is ergodic (because finite, irreducible and aperiodic), so it admits a unique stationary
and limiting distribution 7. Moreover, one can try to solve directly the detailed balance equation:

1 1 1
Tg=="p—= and @, = = .= leading to =

2 ) 2 3

-7, and w.= =T,

2 2
SO
@ 2 2 g “ 5

which provides the answer to the question (and notice that 7, = %, T = ﬁ).

b) Let us compute the eigenvalues Ao, A1, A2 of P:

2 1
Ao =1, TI‘(P)2521+>\1+)\2, det(P):ﬁ:)\l')\g

Solving for A1, A2 gives \; = _3+170 ”7/3, Ao = _3_170 VI3 o the spectral gap of the chain is given by

7—\/7/3

= 1— =
7 |>\2| 10

Using the bound seen in class (remembering that the chain starts in a corner (state c)), we obtain

1 5 T—/7/3
P(Xn = alXo = ¢) = ma| < |1 = 7llrv < 5= exp(—ym) = \/; exp (—10/ : n)

c) The target distribution 7 = (%, %, %). Let us first compute the 3 ratios:

2

X ==
Ta Pab

8
=—, Y==2 =- and Z=——=—
5
Then the Metropolis-Hastings transition probabilities are given by
5ab = Pab min(l, X) = Pab = % ﬁac = Pac min(l, Y) = Pac = % ﬁaa =0
Poa = Poa min(1,1/X) = ppa/X = §  Poe = poe min(1, Z) = ppe = 2 Pob =1 — Poa — Poc = 19

500, = Pca min(L 1/Y> = pca/Y = % ﬁcb = Pcb min(L 1/Z) = pcb/Z = % ﬁcc =1- ﬁca - ﬁcb = %
ie.,
N 0 1/2  1/2
P=1|1/8 19/40 2/5
1/8 2/5 19/40

(whose stationary distribution is indeed 7).



Exercise 3.
a)
H(0,0)=0, H(0,1)=14+J, H(1,00=1+J, H(1,1)=14+14J-0=2
Fix a site 7 and let j # i. We have for the conditional probabilities:

e—H(ziz;)

7-[-('7’.Z ’ x]) = e—H(O,xj) + e—H(1,$j)

e For x; =0:

1 elJrJ
e For z; = 1:
el=J 1

b) By the description given (site ¢ € {1,2} chosen uniformly at random), w = 1/2, so we obtain

e Transitions 00 — x1x9

l1—u l1—u
+

P —
00—00 2 2

u u
=1-wu, Pyo-so= 3 Poo—s10 = 5 Pyo—11 =0

e Transitions 01 — z129

1—u u v 1—w
P = , P =—+—-, P =0, P =
01—00 5 01501 = 5 + 5 01,10 01—11 5
e Transitions 10 — x12x9
1—wu vou 1—w
P - ; P = O, P = — -, P g
10—00 5 10—01 10-10 = 5 + 5 10—11 5
e Transitions 11 — z1x2
v v
Py i1 =1-v, P01 = > Py 10 = > P11 00=10
Putting this together with the order 00,01, 10,11

l—u 3 5 0
I

1— + 1—
to0 up Ip
0 3 5 1-w

c) We have
u—+v
Pey =
eo 5 eo
ut

Hence “5* is an eigenvalue with eigenvector eg.



d)

£)

We then note that the sum of (first + fourth) rows and the sum of (second + third) rows
are equal vectors. Thus (first + fourth - second - third) rows equals the zero vector. Thus
det P = 0 and there is a 0 eigenvalue.

Moreover, we know there must be the 1 eigenvalue (since sums of rows is equal to one for a
stochastic matrix).

The fourth eigenvalue can be found by looking at the trace TrP = 2:

u-+v

04+1+ +A=2
_ _ 1= 1—
so)\—l—“;”’—T“—i— 5o
Summarizing, the eigenvalues are:
u+v l—u 1-—vw
1=1, A 5 3 5t M 0

They are all non-negative.
In fact J > 0 implies A3 > Ao. Indeed: 1 — “—‘ZH’ > “T‘H’ is equivalent to 1 > u + v which means
(1 + elJrJ)(l + elfJ) > 1 _’_elfJ + 617‘](1 +61+J)

equivalent to
T+ett pel=Ta ety > 147 1 el /(14 e1)
in other words e't7/ > e~/ true for J > 0.

Therefore the spectral gap is

u—+v U+ v
r=1-(1-170) =5

For J = 0 it is 1/2 and for J >> 1 it behaves like O(e~”/). A standard bound seen in class
(for given e TV distance)

1 1
Trix < — log< ), Tmin := min _ 7(z1, z2).
vy E Mmin (z1,22)ES

Tmix:O< 2 )
u—+v

The mixing time is minimal for J = 0 and grows like Q(e”’) for J — +oco. This is intuitive
since the chain has more and more difficulty to jump from state 00 to 01 or 10. These two
states act like a bottleneck for paths going from 00 to 11.

At J = +00 the states 00 and 11 become absorbing. The states 10 and 01 become transient.
The chain is not irreducible.

So

Lazy version P(®) = oI + (1 — a)P: this increases the self-loop probabilities and decreases
accordingly the edge probabilities. The eigenvalues transform as A — a + (1 — a)X. In
particular the top eigenvalue stays 1, and the since all eigenvalues are positive their ordering
does not change, and the new spectral gap is given by

@) Zp (a+(1—a) (1—U;U>> =(1-q) (u;v)




