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Exercice 1.

a) f7

b) f12

c) f1

d) f5

e) f9

f) f8

g) f3

h) f10

i) f2

j) f4

k) f11

l) f6

Exercice 2.

a) Si n = 0 : AV en x = ±3, AH en y = 0.
Si n = 1 : AV en x = 3, AH en y = 0, trou en P =

(
−3;− 1

6

)
.

Si n = 2 : AV en x = ±3, AH en y = 1.
Si n = 3 : AV en x = ±3 AO en y = x.
Si n ≥ 4 : AV en x = ±3, pas d’AO.

b) À l’aide du “Truc du Reste” (et de Horner) pour le dénominateur, et de la différence de 2 carrés pour le
numérateur, on factorise (où le second facteur du dénominateur est irréductible puisque son ∆ = −3 < 0) :

f(x) =
(x− 1)n(x+ 1)n

(x− 1)(3x2 + 3x+ 1)

Si n = 0 : AV en x = 1, AH en y = 0.
Si n = 1 : pas d’AV, AH en y = 0, trou en P =

(
1; 2

7

)
.

Si n = 2 : pas d’AV, AO en y = 1
3x, trou en P = (1; 0).

Si n ≥ 3 : pas d’AV pas d’AO, trou en P = (1; 0).

Exercice 3.

a) • VI(f) : 2x2 = 0

x = 0

Z(f) : 4− x2 = 0

(2− x)(2 + x) = 0

x = 2 ou x = −2

Donc D(f) = R \ {0} et Z(f) = {−2; 2}. Avec D(f) établi, nous pouvons considérer pour la suite

f̃(x) =
4− x2

2x
(si x ̸= 0)

TDS :

−x2 + 4

2x

f(x)

−2 0 2

− 0 + + 0 −
− − 0 + +

+ 0 − + 0 −

• AV en x = 0 car “ f̃(0)” de la forme “ nb. non nul
0 ” (voir TDS).

AO : L’équation fondamentale de la division euclidienne donne −x2 + 4 = − 1
2x · 2x + 4, donc f̃(x) =

− 1
2x + 4

2x = − 1
2x + 2

x (puisque le dénominateur est un monôme, on aurait aussi pu obtenir directement

f̃(x) = −x2+4
2x = −x2

2x + 4
2x = − 1

2x+ 2
x ). D’où y = − 1

2x est AO, et δ(x) = 2
x avec Z(δ) = ∅.

TDP :

2

x

δ(x)

f̃(x)/AO

0

+ +

− 0 +

− +

sous sur
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• Graphe (avec o.o. non définie) :

−1 1

−1

1

f

y = − 1
2
x

x = 0

b) • VI(f) : (3x− 2)2 = 0

3x− 2 = 0

x = 2
3

Z(f) : x2 = 0

x = 0

Donc D(f) = R \
{

2
3

}
et Z(f) = {0}.

TDS :

x2

(3x − 2)2

f(x)

0 2
3

+ 0 + +

+ + 0 +

+ 0 + +

• AV en x = 2
3 car “f

(
2
3

)
” de la forme “ nb. non nul

0 ” (voir TDS).

AO (ici, AH en fait) : L’équation fondamentale de la division euclidienne donne

x2 = 1
9 · (9x2 − 12x+ 4) + 4

3x− 4
9

donc f(x) = 1
9 +

4
3x−

4
9

(3x−2)2 = 1
9 + 12x−4

(9x−6)2 . D’où y = 1
9 est AH, et δ(x) = 12x−4

(9x−6)2 avec Z(δ) =
{

1
3

}
.

TDP :

12x − 4

(9x − 6)2

δ(x)

f̃(x)/AO

1
3

2
3

− 0 + +

+ + 0 +

− 0 + +

sous χ sur sur

• Graphe (avec f(0) = 0) :

−1 1

−0.4

0.4

1

f

y = 1
9

x = 2
3

c) • VI(f) : (x− 1)(x2 − 1) = 0

(x− 1)(x− 1)(x+ 1) = 0

x = 1 ou x = −1

Z(f) : (x+ 1)3 = 0

x+ 1 = 0

x = −1

Donc D(f) = R \ {±1} et Z(f) = ∅ (car x = −1 est déjà VI). Avec D(f) en tête, on peut considérer
pour la suite

f̃(x) =
(x+ 1)3

(x− 1)2
(f̃(x) = f(x) si x ̸= −1)
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TDS :

(x + 1)2

x + 1

(x − 1)2

f(x)

−1 1

+ 0 + +

− 0 + +

+ + 0 +

− + +

• Trou en (−1; 0) car f̃(−1) = 0, et AV en x = 1 car “f(1)” de la forme “ nb. non nul
0 ” (voir TDS).

AO : L’équation fondamentale de la division euclidienne donne

x3 + 3x2 + 3x+ 1 = (x+ 5)(x2 − 2x+ 1) + 12x− 4

donc f̃(x) = x+ 5 + 12x−4
(x−1)2 . D’où y = x+ 5 est AO, et δ(x) = 12x−4

(x−1)2 avec Z(δ) =
{

1
3

}
.

TDP (il n’est pas nécessaire d’inclure la VI x = −1 dans le tableau si on garde en tête D(f) ; en effet, la
courbe y = δ(x) n’est qu’un guide pour aider à la représentation du graphe de f) :

12x − 4

(x − 1)2

δ(x)

f̃(x)/AO

1
3 1

− 0 + +

+ + 0 +

− 0 + +

sous χ sur sur

• Graphe (avec f(0) = 1) :

−10 −8 −6 −4 −2 2 4 6 8 10

−5

1

5

10

15

20

f

y = x+ 5

x = 1

d) • VI(f) : x(x2 + 1) = 0

x = 0

(x2 + 1 n’est jamais nul)

Z(f) : x(x3 + 1) = 0

x(x+ 1)(x2 − x+ 1) = 0

x = 0 et x = −1 sont les zéros du numérateur

(le ∆ de x2 − x+ 1 est négatif) mais x = 0 n’est pas un zéro de f (car VI)
Donc D(f) = R \ {0} , Z(f) = {−1} et la forme réduite (factorisée) de f(x) est f̃(x) = (x+1)(x2−x+1)

x2+1 .
TDS :

x + 1

x2 − x+ 1

x2 + 1

f(x)

−1 0

− 0 + +

+ + +

+ + +

− 0 + +

• Trou en (0; 1) (car f̃(0) = 1), et pas d’AV (parce que f̃ n’a pas de VI).

AO : L’équation fondamentale de la division de x3 + 1 par x2 + 1 est x3 + 1 = x · (x2 + 1)− x+ 1, donc
f̃(x) = x+ −x+1

x2+1 . D’où y = x est AO, et δ(x) = −x+1
x2+1 (avec Z(δ) = {1}).
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TDP :

−x + 1

x2 + 1

δ(x)

f̃(x)/AO

1

+ 0 −
+ +

+ 0 −
sur χ sous

• Graphe :

−1 1

11
f

y = x

Exercice 4.
• Expression de f . Comme il n’y a pas de “trou”, on peut supposer que f(x) est sous forme irréductible.

Les deux AV d’équations x = −3 et x = 2 indiquent que le dénominateur de f(x) aura au moins comme
facteurs (x+ 3) et (x− 2). Supposons donc que le dénominateur est bien (x+ 3)(x− 2).
L’AH d’équation y = −2 donne alors f(x) = −2 + r(x)

(x+3)(x−2) où r(x) = ax + b (le degré du numérateur de
δ(x) est nécessairement strictement inférieur au degré du diviseur).
Donc f(x) = −2x2−2x+12+ax+b

x2+x−6 . Comme f(0) = 0, le numérateur de f(x) évalué en 0 est nul, et alors b = −12.

Avec f(x) = −2x2−2x+ax
x2+x−6 = x(−2x−2+a)

x2+x−6 et le fait que f n’a qu’un seul zéro, on déduit a = 2 et

f(x) =
−2x2

(x+ 3)(x− 2)

Une étude succincte du signe de f(x) (par exemple, on remarque que f(x) est négatif si x < −3, puis, au
vu du degré de chacun de ses facteurs, f(x) change de signe en x = −3, en x = 2, mais pas en x = 0) peut
confirmer que le graphe donné correspond bien à cette expression.

• Expression de g. Comme dans le cas précédent, on peut supposer que g(x) est sous forme irréductible.
Les deux AV d’équations x = −2 et x = 0 suggèrent que le dénominateur est x(x+ 2).
L’AO d’équation y = x mène alors à g(x) = x + r(x)

x(x+2) où r(x) = ax + b. Comme le graphe de g intersecte
l’AO en x = 1, on a r(1) = 0, c’est-à-dire b = −a.
Donc g(x) = x3+2x2+ax−a

x2+2x . Avec g(−1) = 1, on obtient 1−2a
−1 = 1, soit a = 1, et alors

g(x) =
x3 + 2x2 + x− 1

x2 + 2x

Le numérateur de g(x) n’est pas facilement factorisable par les méthodes que nous connaissons : nous ne
vérifions pas plus loin cette expression (qui, par ailleurs, est bien l’expression de la fonction représentée !).

Exercice 5. L’ensemble S := {x ∈ Q | x2 ≤ 2} est majoré par 2 ∈ Q car pour tout y ∈ S, on a y ≤
√
2 < 2 ∈ Q

(en effet, si
√
2 < y, alors 2 =

√
2 ·

√
2 <

√
2 · y < y · y = y2, c’est-à-dire y /∈ S). Voyons que

√
2 est bien la borne

supérieure de S (comme
√
2 /∈ Q, on aura gagné).

Supposons par contradiction que S possède une borne supérieure b avec b <
√
2 (pour l’exercice, on espère trouver

un tel b ∈ Q). Comme Q est dense dans R, il existe r ∈ Q tel que b < r <
√
2. Cependant, cette dernière inégalité

signifie que r ∈ S or cela n’est pas possible car b était supposé être une borne supérieure, et donc en particulier
un majorant de S.

Exercice 6. Montrons tout d’abord que l’intervalle ]a; b[ contient un nombre infini de rationnels. Supposons
par contradiction que ce n’est pas le cas. Par conséquent, nous pouvons écrire ]a; b[∩Q = {r1, . . . , rn} avec la
propriété que a < r1 < · · · < r2 < b. Comme Q est dense dans R, il existe un nombre q ∈ Q tel que a < q < r1.
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On arrive donc à la contradiction que q ∈ ]a; b[∩Q mais pourtant q /∈ {r1, . . . , rn}. Ainsi notre hypothèse de
départ est fausse et donc ]a; b[ contient une infinité de rationnels.
Étant donné qu’entre deux rationnels, il y a toujours un irrationnel (par exemple, si a, b ∈ Q avec a < b, alors
r = a+

√
2
2 (b− a) est un irrationel strictement compris entre a et b), on conclut qu’il y a également une infinité

d’irrationels.

Exercice 7.
a) Faux car

√
2 + (−

√
2) = 0 ∈ Q.

b) Faux car
√
2 ·

√
2 = 2 ∈ Q.

c) Vrai, soient a
b et c

d deux rationnels alors 1
2

(
a
b + c

d

)
= ad+bc

2bd ∈ Q.
d) Faux car 1

2 (
√
2 + (−

√
2)) = 0 ∈ Q.

e) Cette assertion est vraie. Supposons le contraire et soit n un entier premier tel que
√
n = p

q , fraction
irréductible (c’est-à-dire que p et q sont premiers entre eux). En élevant cette égalité au carré on a nq2 = p2 ;
donc n divise p2 et figure forcément dans la décomposition en facteurs premiers de p : p = np′. Ceci implique
nq2 = n2p′2, q2 = np′2, et donc n divise q2. Ainsi n figure forcément dans la decomposition en facteurs
premiers de q, mais alors p et q ne sont pas premiers entre eux, ce qui est une contradiction.

f) Faux car 3
√
8 = 2.

Exercice 8. Raisonnons par récurrence sur n.

Initialisation. Pour n = 0, la somme à gauche de l’égalité vaut 1 ; à droite de l’égalité, on a
1− x1+0

1− x
= 1 pour

tout x ̸= 1. L’égalité est donc vérifiée pour n = 0.

Hérédité. Supposons que l’égalité est vraie pour n et montrons qu’elle est vraie pour n+ 1 :

1+x+x2+· · ·+xn+xn+1 = (1+x+x2+· · ·+xn)+xn+1 réc.
=

1− xn+1

1− x
+xn+1 =

1− xn+1 + (1− x)xn+1

1− x
=

1− xn+2

1− x
.

L’égalité est donc vraie pour n+ 1 si elle l’est pour n. Par récurrence, elle est vraie pour tout n ∈ N.

Notons que pour n = 1, 2, cette formule est déjà apparue dans le cadre de la factorisation de polynômes sous la
forme :

(1− x) · (1 + x+ x2 + · · ·+ xn) = 1− xn+1.

En prenant l’égalité que l’on vient de démontrer avec x = 1
2 , on obtient

1 +
1

2
+

1

22
+ · · ·+ 1

2n
=

1− 1
2n+1

1− 1
2

= 2 · 2
n+1 − 1

2n+1
=

2n+1 − 1

2n
=

2n+1

2n
− 1

2n
= 2− 1

2n
< 2.

Exercice 9. Appelons P (n) l’égalité
n∑

k=0

k2 =
n(n+ 1)(2n+ 1)

6
.

Initialisation. Montrons P (0). D’un côté,
∑0

k=0 k
2 = 0. De l’autre,

0(0 + 1)(2 · 0 + 1)

6
= 0. Les deux côtés

valent 0, l’égalité est démontrée dans ce cas.

Hérédité. Supposons P (n) vraie, et montrons P (n+ 1) :
n+1∑
k=0

k2 =

n∑
k=0

k2 + (n+ 1)2

P (n)
=

n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)(n(2n+ 1) + 6(n+ 1))

6

=
(n+ 1)(2n2 + 7n+ 6)

6
=

(n+ 1)(n+ 2)(2n+ 3)

6
.

L’hérédité est démontrée, et P (n) est donc vraie pour tout n ∈ N.
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