Cours Euler — 2° Corrigé 18 2025-2026
Exercice 1.
a) fr c) fi e) fo g8) fs i) f2 k) fu
b) fiz d) fs f) fs h) fio 3 fa 1) fe
Exercice 2.
a) Sin=0: AV en z = +3, AH en y = 0.

Sin=1: AVenz =3, AHeny =0, trou enP:(f?’;f%).

Sin=2: AV en z = 43, AHeny=1.

Sin=3: AV en x =43 AO en y ==.

Sin>4: AV en x = 43, pas d’AO.
b) A T'aide du “Truc du Reste” (et de Horner) pour le dénominateur, et de la différence de 2 carrés pour le

numérateur, on factorise (o le second facteur du dénominateur est irréductible puisque son A = —3 < 0) :
- 1" "
PRTCE S
(r—1)Bx2+3z+1)

Sin=0: AVenz =1, AH en y = 0.

Sin=1: pas d’AV, AHen y =0, trouen P = (1; %)

Sin=2: pas d’AV, AOeny= %x, trou en P = (1;0).

Sin>3: pas d’AV pas d’AO, trou en P = (1;0).
Exercice 3.
a) e VI(f): 222 =0 Z(f) : 4—22=0

z=0 2-x)24+x)=0
r=2 ou = -2

Donc ’ D(f) =R\ {0} ‘ et Z(f) ={-2;2}. Avec D(f) établi, nous pouvons considérer pour la suite

- 4 — g2
f@)=—— (iz#0)
TDS :
—2 0 2
—x2+4 - 0 + + 0 -
2z - - 0 + +
f(x) + 0 - | + 0 -
e AV en car “£(0)” de la forme «nb.non mul» (yoir TDS).
AO : L'équation fondamentale de la division euclidienne donne —2? + 4 = —1z -2z + 4, donc f(z) =
—%x + % = —%x + % (puisque le dénominateur est un mondme, on aurait aussi pu obtenir directement
flz) = ’“’2?4 = ’2—22 + 4 =—21ao+2). Dot|y=—2z|est AO, et |§(z) = 2 | avec Z(5) = (.
TDP :
0
2 + +
z - 0 +
o(x) — +
f(g;)/AO sous || sur




e Graphe (avec o0.0. non définie) :

b) e VI(f): (3z-2)*=0

3r—2=0
r=3
Donc | D(f) =R\ {2} |et Z(f) = {0}.
TDS :
0 3
2 + 0 + o+
(3z — 2)? + + 0 +
f(z) + 0 + || +

e AVen|z =2 |car “f (2)” de la forme “2b-nonnul> (yoip TDS).

AO (ici, AH en fait) : L’équation fondamentale de la division euclidienne donne

=192 —120+4)+ 30— 3

donc f(x) = é + I L S % + AZ2=d Dot |y = é est AH, et |§(z) = 22224 |avec Z(6) = {%}

Bo—2)? 92—6)7 = [92-6)
TDP :
1 2
3 3
120 — 4 - 0 + +
(92 — 6)? + + 0 +
o(z) - 0 + +
f(gg) /AO | sous X sur sur

e Graphe (avec f(0) =0) : ! ;
1
041 3
yEs Lol
; jl 1 i 1 i :
o
—0.4-+ : 3
c) e VI(f): (x—1)(2*=1)=0 Z(f) : (x+1)*=0
(z—1D(x—-1)(z+1)=0 z+1=0
r=1louzx=-1 x=-1

Donc ‘D(f) =R\ {£1} ‘ et Z(f) = 0 (car x = —1 est déja VI). Avec D(f) en téte, on peut considérer
pour la suite

fay =t ()= f@)sia -1



TDS :

-1 1

(x4 1)° + 0 + +
41 - 0 + +
(z —1)? + + 0 +
fo | -+ ]+

e Trou en | (—1;0) |car f(—1) =0, et AV en car “f(1)” de la forme ““b'n;+n“1” (voir TDS).

AO : L’équation fondamentale de la division euclidienne donne
2 +322 + 32+ 1= (v +5)(2® — 20+ 1)+ 122 — 4

donc f(z) =z +5+ (ffl*)‘é. D’ou est AO, et |§(x) = (ffl’)% avec Z(0) = {%}.

TDP (il n’est pas nécessaire d’inclure la VI = —1 dans le tableau si on garde en téte D(f); en effet, la
courbe y = 0(x) n’est qu'un guide pour aider a la représentation du graphe de f) :

3 1
120 — 4 - 0 + +
(z —1)? + + 0 +
o(x) - 0 + +
f(gg)/AO sous X sur sur

e Graphe (avec f(0)=1) : v j ct
20

15

10

o i N e e i i e e

e=1
d) e VI(f): z(2?+1) =0 Z(f) z(x®+1) =0
x=0 rz+ 1) (2 —z+1)=0
(z? 4 1 n’est jamais nul) x=0et z=—1 sont les zéros du numérateur

(le A de 22 — 2 + 1 est négatif) mais 2 = 0 n’est pas un zéro de f (car VI)
Donc ’ D(f) =R\ {0} ‘, Z(f) = {—1} et la forme réduite (factorisée) de f(x) est f(z) = (@)@ —ot1)

241
TDS :
-1 0
41 - 0 + +
2 —x+1] + + +
241 + + +
f(z) -0 + || +

e Trou en | (0;1) | (car f(0) = 1), et pas d’AV (parce que f n’a pas de VI).
AO : L’équation fondamentale de la division de 23 + 1 par 22 + 1 est 2 +1 =z - (2> +1) — 2 + 1, donc

flz)=z+ ;gjll Dot est AO, et |d(x) = ;gﬂj} (avec Z(9) = {1}).




TDP :

f(gg)/A() sur X sous

e Graphe :

Exercice 4.

e Expression de f. Comme il n’y a pas de “trou”, on peut supposer que f(z) est sous forme irréductible.
Les deux AV d’équations x = —3 et z = 2 indiquent que le dénominateur de f(x) aura au moins comme
facteurs (x 4+ 3) et (z — 2). Supposons donc que le dénominateur est bien (z + 3)(x — 2).

I’AH d’équation y = —2 donne alors f(z) = —2 + #@72)

0(x) est nécessairement strictement inférieur au degré du diviseur).

ou r(xz) = ax + b (le degré du numérateur de

Donc f(z) = W. Comme f(0) = 0, le numérateur de f(z) évalué en 0 est nul, et alors b = —12.
Avec f(x) = 72;622;3{2” = z(;iﬁ;i}'“) et le fait que f n’a qu’un seul zéro, on déduit a = 2 et
—272
T)= ————
/(@) (x +3)(x—2)

Une étude succincte du signe de f(z) (par exemple, on remarque que f(x) est négatif si © < —3, puis, au
vu du degré de chacun de ses facteurs, f(z) change de signe en = —3, en = 2, mais pas en = 0) peut
confirmer que le graphe donné correspond bien & cette expression.

e Expression de g. Comme dans le cas précédent, on peut supposer que g(z) est sous forme irréductible.

Les deux AV d’équations = —2 et = 0 suggérent que le dénominateur est z(z + 2).

r(z)

Ty Ol r(x) = ax + b. Comme le graphe de ¢ intersecte

L’AO d’équation y = x meéne alors a g(z) = = +
PAO en x =1, on a r(1) = 0, c’est-a-dire b = —a.

x3+2z2+amfa
2422

. Avec g(—1) = 1, on obtient % =1, soit a = 1, et alors

Donc g(z) =

B+ +r—1

Le numérateur de g(x) n’est pas facilement factorisable par les méthodes que nous connaissons : nous ne
vérifions pas plus loin cette expression (qui, par ailleurs, est bien 1’expression de la fonction représentée!).

Exercice 5. L’ensemble S := {z € Q | 22 < 2} est majoré par 2 € Q car pour tout y € S,onay <v2<2€Q
(en effet, si v/2 < y, alors 2 = v2-v2 < V2-y < y-y =32, cest-a-dire y ¢ S). Voyons que v/2 est bien la borne
supérieure de S (comme /2 ¢ Q, on aura gagné).

Supposons par contradiction que S posséde une borne supérieure b avec b < v/2 (pour I'exercice, on espére trouver
un tel b € Q). Comme Q est dense dans R, il existe r € Q tel que b < 7 < /2. Cependant, cette derniére inégalité
signifie que r € S or cela n’est pas possible car b était supposé étre une borne supérieure, et donc en particulier
un majorant de S.

Exercice 6. Montrons tout d’abord que l'intervalle ]a;b[ contient un nombre infini de rationnels. Supposons
par contradiction que ce n’est pas le cas. Par conséquent, nous pouvons écrire Ja;b[NQ = {ry,...,7,} avec la
propriété que a < r; < --- < ro < b. Comme Q est dense dans R, il existe un nombre g € QQ tel que a < ¢ < ry.



On arrive donc a la contradiction que ¢ € ]a;b[NQ mais pourtant ¢ ¢ {ry,...,r,}. Ainsi notre hypothése de
départ est fausse et donc ]a; b[ contient une infinité de rationnels.
Etant donné qu’entre deux rationnels, il y a toujours un irrationnel (par exemple, si a,b € Q avec a < b, alors

r=a-+ g(b — a) est un irrationel strictement compris entre a et b), on conclut qu’il y a également une infinité
d’irrationels.

Exercice 7.

a) Faux car v2 + (—v/2) =0€ Q.

b) Faux car V2-v/2=2€Q.

c) Vrai, soient ¢ et § deux rationnels alors % (% + 2) = a‘é;fdbc € Q.
d) Faux car $(vV2+ (—v2)) =0€ Q.

e) Cette assertion est vraie. Supposons le contraire et soit n un entier premier tel que /n

%, fraction
irréductible (c’est-a-dire que p et g sont premiers entre eux). En élevant cette égalité au carré on a ng? = p?;
donc n divise p? et figure forcément dans la décomposition en facteurs premiers de p : p = np’. Ceci implique
ng® = n?p?, ¢> = np'?, et donc n divise ¢2. Ainsi n figure forcément dans la decomposition en facteurs
premiers de ¢, mais alors p et ¢ ne sont pas premiers entre eux, ce qui est une contradiction.

f) Faux car 8 =2.

Exercice 8. Raisonnons par récurrence sur n.

1— g1t0
Initialisation. Pour n = 0, la somme & gauche de ’égalité vaut 1; a droite de ’égalité, on a L = 1 pour
tout & # 1. L’égalité est donc vérifiée pour n = 0.
Hérédité. Supposons que I'égalité est vraie pour n et montrons qu’elle est vraie pour n + 1 :
ré 1— In+1 1— mn—)—l 1—2x xTL+1 1— xn+2
Lbta® e e = (et o) S g = ;r e 1
-z -z —x

L’égalité est donc vraie pour n + 1 si elle I'est pour n. Par récurrence, elle est vraie pour tout n € N.

Notons que pour n = 1, 2, cette formule est déja apparue dans le cadre de la factorisation de polynémes sous la
forme :

(1—$)~(1+x—|—g}2+...+mn):1_$n+1.

En prenant I’égalité que ’on vient de démontrer avec z = %, on obtient

27
11 11— ontl 1 ontl _q  ontl g 1
L R TR T -1 =2 T T T gn T on w2 <%

Exercice 9. Appelons P(n) l'égalité Z k? =
k=0

Initialisation. Montrons P(0). D’un coté, 22:0 k%* = 0. De l'autre,

nn+1)(2n+1)
6

00+ 1)(2-0+1) = 0. Les deux cotés

6
valent 0, I’égalité est démontrée dans ce cas.
Hérédité. Supposons P(n) vraie, et montrons P(n + 1) :
n+1 n
S =3 K 1y
k=0 k=0
() n(n )6( "D g1
_nn+1)(2n+1) +6(n+ 1)
B 6
_(n+1)(n(2n+1) +6(n+1))
B 6
(n+1)2n*+Tn+6)  (n+1)(n+2)(2n+3)
B 6 B 6 '

L’hérédité est démontrée, et P(n) est donc vraie pour tout n € N.



