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Semaine 15

Cours Turing

1 Cryptographie à clé publique

Dans ce chapitre, nous allons voir le protocole d’échange de clé de Diffie-Hellman-Merkle :
c’est un protocole astucieux qui permet à Alice et Bob d’échanger une clé secrète en ne faisant
qu’échanger des messages qui peuvent être écoutés par tout le monde ! (pour ensuite utiliser
cette clé pour communiquer avec un système de cryptographie à clé secrète, comme DES).

Bien sûr, il peut sembler a priori complètement impossible qu’Alice et Bob parviennent à se
mettre d’accord sur une clé secrète s’ils ne peuvent qu’échanger des messages dits publics, à
savoir des messages qu’Eve écoute en permamence. Et dans l’absolu, c’est vrai : c’est impos-
sible. . .

Mais il se trouve que ça devient possible si on ajoute l’hypothèse qu’Eve n’a pas une puissance
de calcul infinie, et qu’Alice et Bob disposent de ce qu’on appelle une opération à sens unique,
c’est-à-dire une opération qu’il est facile d’effectuer (i.e., qu’il est possible d’effectuer en un
temps raisonnable), mais très difficile d’inverser (par très difficile, on entend ici que le temps
nécessaire pour effectuer cette inversion est beaucoup trop long). Voyons ceci en détail.

1.1 Le protocole d’échange de clé de Diffie-Hellman-Merkle : principe

En guise d’introduction, nous allons d’abord voir une version simplifée de ce protocole. Pour
ce faire, nous allons supposer que l’opération à sens unique mentionnée ci-dessus est la multi-
plication. Vous objecterez qu’il est à l’heure actuelle très facile d’effectuer l’opération inverse,
à savoir la division, ce qui est vrai ; mais on peut quand-même dire qu’il est en général plus
difficile de diviser que de multiplier. Par extension, imaginons donc un monde où il soit très
difficile d’effectuer des divisions.

1. Pour commencer, Alice et Bob se mettent d’accord sur un nombre entier commun M ,
qu’ils communiquent “en clair” à tout le monde (et donc en particulier à Eve, qui écoute
tout).

2. Puis Alice choisit en secret un nombre entier A1 et effectue la multiplication A2 = M ·A1 ;
Bob fait de même de son côté en choisissant un nombre secret B1 et en effectuant la
multiplication B2 = M ·B1.
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3. Alice communique ensuite le nombre A2 à Bob, et Bob communique le nombre B2 à
Alice. Eve, qui a tout écouté (pour rappel, Alice et Bob ne peuvent rien communiquer
secrètement), a donc maintenant entendu les valeurs des nombres M , A2 et B2 .

4. Puis Alice reprend son nombre secret A1 et effectue, toujours en secret, la multiplication
A3 = B2 · A1 ; de même, Bob effectue en secret la multiplication B3 = A2 ·B1.

Que valent donc A3 et B3 ? A3 = B2 · A1 = M · B1 · A1 et B3 = A2 · B1 = M · A1 · B1. Vu que
la multiplication est commutative, ces deux nombres sont égaux : K = A3 = B3 est donc la clé
secrète partagée entre Alice et Bob.

Bien entendu, il faut encore vérfifier qu’Eve ne puisse pas trouver la clé K. Mais vous pouvez
vérifier en effet qu’avec seulement les valeurs de M , A2 et B2 à disposition, Eve est incapable de
trouver la clé K si elle ne sait pas effectuer des divisions (ou ne peut pas effectuer ces divisions
en un temps raisonnable, ce qui revient au même). K est donc bien le secret partagé d’Alice et
Bob.

Finalement, il importe d’observer encore une chose : Alice et Bob vivent dans le même monde
qu’Eve et ne savent donc pas diviser non plus, par hypothèse. Ceci veut dire que même s’ils
ont pu se mettre d’accord sur une clé secrète commune K, ni l’un ni l’autre n’est capable de
retrouver le nombre secret initial choisi par l’autre, même à la fin du protocole. Ainsi, Alice ne
connaît pas B1, ni Bob ne connaît A1. Ces deux nombres restent privés, tandis que A2 et B2

sont eux publics. Et c’est la combinaison de A1 et B2 d’une part, et de B1 et A2 d’autre part,
qui permet de trouver le secret commun K.

Une autre façon encore plus visuelle (voir la figure ci-dessous) d’envisager ce protocole est de
penser à des pots de peinture de différentes couleurs (qu’il est facile de mélanger, mais très
difficile de séparer). Alice et Bob se mettent d’accord au départ sur une couleur commune
(disons le jaune), et choisissent chacun en secret une autre couleur (le rouge pour Alice, le
bleu pour Bob). Alice mélange le jaune et le rouge, obtenant ainsi de l’orange, et transmet
cette couleur à Bob ; Bob mélange de son côté le jaune et le bleu, obtenant ainsi du vert, et
transmet cette couleur à Alice. Puis Bob mélange la couleur reçue d’Alice, l’orange, avec sa
couleur secrète, le bleu, et obtient du brun. Alice de son côté mélange le vert reçu de Bob avec
sa couleur secrète, le rouge, et obtient le même brun. Mais Eve, qui n’a vu passer que les pots
de couleur jaune, orange et vert, n’est pas en mesure d’obtenir le même brun qu’Alice et Bob :
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1.2 Fonctions à sens unique

Dans la suite, nous allons parler de fonctions à sens unique, plutôt que d’opérations à sens
unique. Une fonction à sens unique est une fonction F telle que :

1. Pour toute valeur de A, il est facile de calculer F (A).
2. Si on nous donne une valeur de B (faisant partie de l’image de F ), il est alors très difficile

de trouver une valeur de A telle que F (A) = B.

Cette deuxième ligne donne une condition plus stricte à respecter que la condition d’être “difficile
à inverser”. Voyez plutôt :

- La fonction F telle que F (A) = 0 pour toute valeur de A est la fonction la plus difficile à
inverser qui soit ! Pour autant, ça n’est pas une fonction à sens unique, car il est facile de trouver
une valeur de A telle que F (A) = 0 (en effet, n’importe quelle valeur de A fonctionne !)

- De même, pour un entier N donné, la fonction F (A) = A (mod N) définie sur tous les nombres
entiers A n’est pas à sens unique, car pour une valeur B entre comprise entre 0 et N − 1, il
suffit de choisir A = B pour trouver F (A) = B.

- Par contre, il se trouve que la fonction de Rabin F (A) = A2 (mod N) est une fonction à sens
unique si N = P ·Q, avec P et Q des grands nombres premiers (et qu’on connaît seulement la
valeur de N , et pas les facteurs P et Q). C’est sur cette fonction que se base le cryptosystème
de Rabin, mais celui-ci reste un peu technique à étudier. . .

Dans la paragraphe suivant, vous découvrirez la fonction à sens unique utilisée dans le protocole
de Diffie-Hellman-Merkle.

Notez au passage que ces fonctions à sens unique sont non seulement intéressantes pour la
cryptographie, mais aussi pour générer des suites de nombres aléatoires !

Le problème du “logarithme discret”

En arithmétique classique, si quelqu’un vous donne les valeurs de deux nombres A et C et vous
dit que AB = C, il est facile de calculer la valeur de B en utilisant la formule

B = logA(C)

Bon, il est vrai que calculer un logarithme à la main n’est pas si facile, mais toute calculatrice
digne de ce nom vous permettra de faire ça rapidement.

En arithmétique modulaire, rien n’est moins vrai ! En effet, si on nous donne : N un grand
nombre premier, A et C deux nombres compris entre 2 et N − 1, et qu’on nous dit que
AB (mod N) = C, il est alors très difficile de retrouver la valeur de B 1. On appelle ça le
problème du logarithme discret (par analogie à la relation trouvée ci-dessus pour la valeur de B
dans le cas continu).

1. Précisons que pour que ce soit effectivement le cas, il faut idéalement que A soit une “racine primitive
modulo N”, c’est-à-dire un nombre dont toutes les puissances génèrent l’ensemble des nombres compris entre 1
et N − 1 (cf. cours de la semaine 12 sur l’algorithme de Lehmer).
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Par contre, nous avons vu la dernière fois qu’il est possible d’effectuer rapidement l’exponentielle
modulaire AB (mod N). De ces deux constatations, nous déduisons que la fonction F suivante
est une fonction à sens unique :

F (B) = AB (mod N)

où N est un grand nombre premier et 2 ≤ A ≤ N − 1.

1.3 Le vrai protocole de Diffie-Hellman-Merkle

Nous allons maintenant tirer parti de cette fonction à sens unique pour permettre à Alice et
Bob de se mettre d’accord sur un secret commun, en supposant qu’Eve n’a pas la puissance de
calcul nécessaire pour résoudre le problème du logarithme discret (ce qui est somme toute une
hypothèse très réaliste). Voici le protocole :

1. Alice et Bob se mettent d’accord sur la valeur d’un grand nombre premier N , ainsi que
sur un autre nombre M compris entre 2 et N − 1. Eve, qui écoute tout, connaît donc
également les valeurs de M et N .

2. Alice choisit secrètement un nombre 2 ≤ A1 < N et effectue l’opération A2 = MA1 (mod N).
De son côté, Bob fait la même chose : il choisit 2 ≤ B1 < N et effectue B2 =
MB1 (mod N).

3. Alice communique la valeur de A2 à Bob et Bob communique la valeur de B2 à Alice.
Eve, qui encore une fois écoute tout, apprend donc les valeurs de A2 et B2.

4. Alice calcule (de son côté) A3 = BA1
2 (mod N) et Bob calcule (aussi de son côté) B3 =

AB1
2 (mod N).

Nous allons maintenant vérifier les deux affirmations suivantes :
1. A3 = B3 = K : Alice et Bob ont donc réussi à se mettre d’accord sur un secret commun.
2. Avec les informations dont elle dispose (et en supposant qu’elle n’a pas une puissance de

calcul infinie), Eve ne peut pas deviner la valeur de K, qui sera donc le secret commun
d’Alice et de Bob.

En effet, on voit que

A3 = BA1
2 (mod N) = (MB1 (mod N))A1 (mod N) = (MB1)A1 (mod N) = MB1·A1 (mod N)

B3 = AB1
2 (mod N) = (MA1 (mod N))B1 (mod N) = (MA1)B1 (mod N) = MA1·B1 (mod N)

ce qui confirme le premier point : les valeurs de A3 et B3 sont égales (car B1 · A1 = A1 · B1).
Quelles sont donc maintenant les informations dont dispose Eve ? Elle connaît :

N, M, A2 = MA1 (mod N) ainsi que B2 = MB1 (mod N)

A moins d’être capable de résoudre le problème du logarithme discret, Eve ne peut donc pas
retrouver les valeurs de A1 ou B1, ni pas conséquent la valeur de A3 = B3 = K : Alice et Bob ont
donc bien trouvé un secret commun K, qu’ils peuvent utiliser pour communiquer secrètement
grâce au protocole DES, par exemple (rappelez-vous que vu que K est un grand nombre, sa
représentation binaire est une longue suite de bits, certes pas complètement aléatoire, mais c’est
un moindre défaut).
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A noter que, comme dans l’exemple avec les multiplications et les divisions, les nombres A1

et B1 restent secrets tout au long du protocole. Alice et Bob n’ont pas besoin de révéler ces
nombres respectifs à leur partenaire ; le protocole fonctionne sans ça.

1.4 Défauts du système

Pour finir, mentionnons que ce système a un défaut principal : c’est justement celui d’être d’un
protocole d’échange de clé, qui nécessite après coup l’utilisation d’un système de cryptographie à
clé secrète pour échanger des messages. La semaine prochaine, nous verrons d’autres protocoles
de cryptographie à clé publique, qui permettent d’échanger directement des messages de manière
confidentielle.

L’autre défaut de ce système est celui déjà mentionné plus haut : il n’existe aucune garantie
théorique que le problème du logarithme discret soit un problème vraiment difficile à résoudre.
Qui sait, peut-être que dans quelques années, quelqu’un trouvera un algorithme efficace pour
résoudre ce problème ? Ceci remettrait en question bien des choses. . . En prévision de cela,
certaines personnes s’intéressent à de nouveaux systèmes cryptographiques, comme celui évoqué
dans le paragraphe suivant.

En attendant, le protocole d’échange de clé de Diffie-Hellman-Merkle est utilisé en tout cas de
l’ordre de 10 milliards de fois par jour sur Whatsapp, par exemple. . . En effet, on estime (en
décembre 2025) que de l’ordre de 60 milliards de messages sont échangés par jour sur cette
application (mais le protocole de Diffie-Hellman-Merkle n’est pas exécuté à chaque message).

1.5 Le même protocole avec des courbes elliptiques !

En général, lorsqu’on entend parler de “courbes elliptiques”, on pense tout de suite à quelque
chose de substantiellement complexe, donc difficile à approcher (par exemple, les courbes el-
liptiques apparaissent dans la démonstration du grand théorème de Fermat évoqué la semaine
dernière). Il se trouve cependant que celles-ci peuvent être utilisées pour une version modifiée
du protocole d’échange de clé de Diffie-Hellman-Merkle, et que cette utilisation est très bien
expliquée dans l’excellent blog de Fang-Pen Lin (en anglais) :

https://fangpenlin.com/posts/2019/10/07/elliptic-curve-cryptography-explained/

Nous éviterons de bêtement paraphraser ce blog dans le présent chapitre, mais nous passerons
à travers les idées principales de celui-ci pendant le cours.
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