
Advanced Probability and Applications EPFL - Fall Semester 2025-2026

Final exam: solutions

Please pay attention to the presentation of your answers and always provide justification. Correct
answer alone will not get you full points.

Exercise 1. Quiz. (20 points) Answer each question below making sure to provide a short jus-
tification (proof or counter-example) for your answer.

a) Let Ω = [0, 1] and F = {A : A or Ac is countable}. Is F a σ-field over Ω?

Solution:

We need to check that the three properties of the σ-field are satisfied.

(i) ∅,Ω ∈ F since the empty set is countable, and Ω is its complement.

(ii) If A ∈ F then Ac ∈ F follows directly from how we defined F .

(iii) For the last property we can consider two cases. First, the sequence (An, n ≥ 1) contains
countable sets only. Then, a countable union of countable sets is countable, so this property is
satisfied. For the second case, suppose at least one of the sets Ai is a complement of a countable
set. Then, by DeMorgan’s law we have that

(∪∞n=1An)
c = ∩∞n=1A

c
n.

Since Ac
i is countable, the intersection ∩∞n=1A

c
n is countable, and ∪∞n=1An is a complement of a

countable set.

b) Let Ω = {1, 2, . . . , p} where p is prime, F is the complete σ-field over Ω, and P(A) = |A|
p for all

A ∈ F . Show that if A and B are independent events, then at least one of A and B is either ∅ or
Ω.

Solution:

If A and B are independent then we have |A|p · |B|p = |A∩B|
p , and it follows that

|A||B|
p

= |A ∩B|.

Since the RHS is an integer, p must be a prime deviser of either |A| or |B|. But, this is only possible
if either |A| or |B| are 0 or p. This, in turn, means that at least one of A and B is either ∅ or Ω.

c) Let (Ω,F ,P) be a probability space. Let N be a random variable taking values in N+ and
(Xn)n∈N+ be a sequence of random variables. We define XN by

∀ω ∈ Ω, XN (ω) = XN(ω)(ω).

Show that XN is a random variable.

Solution: The goal is to show that the function XN : (Ω,F) → (R,B(R)) is measurable.
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Let B ∈ B(R). We consider

A = (XN )−1(B) = {XN ∈ B} = {ω ∈ Ω : XN(ω)(ω) ∈ B}

=
⋃

n∈N+

{ω ∈ Ω : N(ω) = n and Xn(ω) ∈ B}

=
⋃

n∈N+

({N = n} ∩ {Xn ∈ B}).

Since N and Xn are random variables, the sets {N = n} and {Xn ∈ B} are in F . It follows that
A ∈ F and therefore that XN is measurable.

d) Let X be a real square-integrable random variable defined on (Ω,F , P ) and let G be a sub-σ-field
of F . Show that, if we define Var(X | G) = E[(X − E[X | G])2 | G] then we have

Var(X) = E(Var(X | G)) + Var(E[X | G]).

Solution: We write
X − E[X] = X − E[X | G] + E[X | G]− E[X].

The random variable E[X | G] − E[X] is G-measurable. However, by the definition of conditional
expectation in L2(Ω,F , P ), X − E[X | G] is orthogonal to any r.v. that is G-measurable.

We deduce

E
[
(X − E[X])2

]
= E

[
(X − E[X | G])2

]
+ E

[
(E[X | G]− E[X])2

]
= E[Var(X | G)] + Var(E[X | G]).

Alternatively, we can calculate directly the cross-term without mentioning orthogonality. Let Y =
E[X | G] − E[X]. Note that Y is G-measurable. Using the Law of Iterated Expectations (Tower
Property):

E[(X − E[X | G])Y ] = E
[
E[(X − E[X | G])Y | G]

]
= E

[
Y · E[X − E[X | G] | G]

]
(since Y is G-measurable)

= E
[
Y · (E[X | G]− E[X | G])

]
= E

[
Y · 0

]
= 0.

Exercise 2. (20 points) Monte-Carlo integration

Let f be a measurable function on [0, 1] with
∫ 1
0 |f(x)|dx <∞. Let U1, U2, . . . be independent and

uniformly distributed on [0, 1], and let

In =
1

n
(f(U1) + · · ·+ f(Un)) .

a) Show that In
P→

n→∞
I, where I =

∫ 1
0 f(x)dx.

Solution: Let Xi = f(Ui) for i ≥ 1. Then, X1, X2, . . . is a sequence of iid random variables. Since
E(|Xi|) =

∫ 1
0 |f(x)|dx <∞, from the law of large numbers,

In =
1

n

n∑
i=1

Xi
P→ E[X1] = E[f(Ui)] =

∫ 1

0
f(x)dx = I.
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b) Suppose that
∫ 1
0 |f(x)|2dx <∞. Use the Chebyshev’s inequality to estimate P (|In − I| ≥ t) for

t > 0.

Solution: First, we calculate the following:

E[I2n] =
1

n2
(
nE[X2

i ] + n(n− 1)E[Xi]
2
)

=
1

n

(
E[X2

i ] + (n− 1)E[Xi]
2
)

=
1

n

(∫ 1

0
f(x)2dx+ (n− 1)I2

)
V ar(In) = E[(In − E[In])2] = E[(In − I)2] = E[I2n]− I2

=
1

n

(∫ 1

0
f(x)2dx+ (n− 1)I2

)
− I2

=
1

n

(∫ 1

0
f(x)2dx− I2

)
.

Since
∫ 1
0 |f(x)|2dx <∞, we can use Chebyshev’s inequality with the function ψ(t) = t2:

P (|In − I| ≥ t) ≥ E[ψ(|In − I|)]
ψ(t)

≥ E[(|In − I|)2]
t2

≥ σ

nt2
,

where σ =
(∫ 1

0 f(x)
2dx− I2

)
.

c) Suppose supx∈[0,1] |f(x)| <∞. Use Hoeffding’s inequality to estimate P (|In − I| ≥ t) for t > 0.

Solution: Since supx∈[0,1] |f(x)| <∞, |In − I| is bounded. Assuming a ≤ |In − I| ≤ b,

P (|In − I| ≥ t) ≤ 2exp

(
− nt2

2(b− a)2

)

d) Briefly compare the results in parts (b) and (c). For example, which result is stronger? Which
is more general?

Solution: The result in part (c), decays exponentially, so it is stronger. However, the assumption
for part (c) is stricter, thus the bound in part (b) is more general.

Exercise 3. (30 points) Let X1, X2, . . . be independent random variables with

Xn =


1 with probability (2n)−1

0 with probability 1− n−1

−1 with probability (2n)−1

Let M0 = 0 and for n ≥ 1

Mn =

{
Xn if Mn−1 = 0

nMn−1|Xn| if Mn−1 ̸= 0

a) Show that (Mn, n ∈ N) is a martingale with respect to Fn = σ(M0,M1, . . . ,Mn).
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Solution:

We need to check that the three properties of the martingale hold.

i) First, lets check that Mn is integrable for all n. |M0| = 0 and |M1| = 1. For n ≥ 2

E(|Mn|) = E(|Xn|1{Mn−1 = 0 + n|Mn−1||Xn|}) = E(|Xn|1{Mn−1 = 0) + nE(|Mn−1||Xn|})

= E(|Xn|)E(1{Mn−1 = 0) + nE(|Mn−1|)E(|Xn|}) =
1

n
· n− 2

n− 1
+ E(|Mn−1|) <∞

as needed.

ii) (Mn, n ∈ N) is adapted to the filtration (Fn, n ∈ N) by definition

iii) Finally, for the martingale property:

E(Mn+1|Fn) = E(Xn+11{Mn = 0}+ (n+ 1)Mn|Xn+1||Fn)

= E(Xn+11{Mn = 0}|Fn) + E((n+ 1)Mn|Xn+1||Fn)

= E(Xn+1)E(1{Mn = 0}|Fn) + (n+ 1)E(Mn|Fn)E(|Xn+1||Fn)

= 0 · E(1{Mn = 0}|Fn) + (n+ 1)Mn
1

n+ 1
=Mn.

b) Show that (Mn, n ∈ N) does not converge almost surely.

Solution:

Intuitively, a typical realization of (Mn, n ∈ N) looks as follows. We have sequences of zeros,
followed by an occasional 1 or −1, followed by occasional exponential growth that gets zeroed out
again. Note that the terms on the order of n or higher actually stop appearing after a while.
But, for a typical ω the martingale will take values 1 or −1 infinitely often and so the sequence
(Mn(ω), n ∈ N) does not converge to zero.

To show this formally, we proceed as follows. First, we show that (Mn, n ∈ N) converges in
probability to zero. Observe that P({Mn = 0}) = P({Xn = 0}). For any ϵ > 0 we have

P(|Mn| > ϵ) = P(|Xn| > ϵ) ≤ 1

n
→ 0

and so convergence in probability is satisfied.

We can disprove almost sure convergence by appealing to Lemma 9.2 in the notes. Fix, 0 < ϵ < 1.
Then,

P (ω ∈ Ω: |Mn(ω)| > ϵ i.o.) = P (ω ∈ Ω: |Xn(ω)| > ϵ i.o.)

= 1− P (ω ∈ Ω: ∃N s.t. Xn(ω) = 0∀n > N) = 1.

The last equality follows since for any N > 0,

P (ω ∈ Ω: Xn(ω) = 0∀n > N) =
∞∏

n=N

n− 1

n
= 0.

c) Why does the martingale convergence theorem not apply?
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The MCT.V2 fails because supn∈N E(|Mn|) = ∞. This can be seen from part a) where we derived
the recursion for n > 1,

E(|Mn|) =
1

n
· n− 2

n− 1
+ E(|Mn−1|) =

1

n
· (1− 1

n− 1
) + E(|Mn−1|)

=
1

n
· (1− 1

n− 1
) +

1

n− 1
· (1− 1

n− 2
) + E(|Mn−2|) = . . .

=
n∑

k=1

1

k
−

n∑
k=1

1

k(k − 1)

which clearly diverges as n goes to infinity.

The MCT.V1 fails because supn∈N E(|Mn|) = ∞ implies supn∈N E(M2
n) = ∞.

Solution:

d) Define a stopping time T = inf{n ∈ N : Mn ≤ −1 or Mn ≥ 1}. Show that E(MT ) = E(M0).

Hint: You should use a stopped martingale MT∧n.

Solution:

This problem is more trivial than intended since T = 1 always. Thus, E(MT ) = E(M1) = E(M0).

To make it more interesting, we should have defined T as follows:

T = inf{n ∈ N : n ≥ 2 and (Mn ≤ −1 or Mn ≥ 1)}.

The argument follows along the same lines as OSTV3. Namely, we define a stopped martingale
MT∧n. This new martingale is bounded between −1 and 1 and so MCTV1 applies. This new
martingale is closed at infinity and admits a limit MT∧∞. Thus,

E(MT ) =MT∧∞ =MT∧0 =MT0 .

Exercise 4. (30 points) Skorokhod’s representation theorem

This exercise guides you through a proof of a special case of Skorokhod’s representation theorem.
The theorem states that if a sequence of random variables converges in distribution, we can con-
struct a new sequence on a common probability space that has the same distributions and converges
almost surely. We will prove this for the case where the limiting random variable has a continuous
distribution function.

Let (Xn, n ≥ 1) be a sequence of real-valued random variables converging in distribution to a
random variable X. Let Fn be the cumulative distribution function (CDF) of Xn, and F be the
CDF of X. Assume that F is continuous on R.

For a CDF G, define its generalized inverse or quantile function G← : (0, 1) → R by

G←(u) = inf{x ∈ R : G(x) ≥ u}.

We recall the facts established in Exercise 1(h) of the first midterm: for any CDF G, any u ∈ (0, 1)
and any x ∈ R,

G←(u) ≤ x ⇐⇒ u ≤ G(x).

Moreover, if U ∼ Uniform(0, 1), then the random variable Y = G←(U) has G as its CDF.
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Convergence of Quantile Functions

Let x0 ∈ R be a point of continuity for F . That is, for any ϵ > 0, that there exists δ > 0 such that
if |x− x0| < δ, then |F (x)− F (x0)| < ϵ.

a) Fix u ∈ (0, 1) and set x0 = F←(u) = inf{x : F (x) ≥ u}. Prove that for every ε > 0 there exists
N such that for all n ≥ N , ∣∣F←n (u)− F←(u)

∣∣ < ε.

Hint: Using continuity of F at x0, choose α < x0 < β with F (α) < u < F (β). Show that for large
n, Fn(α) < u < Fn(β) and apply the equivalence G←(u) ≤ x ⇐⇒ u ≤ G(x) twice to trap F←n (u)
between α and β.

Solution: First note that what you are asked to prove has a counter example. Namely, if F is flat
on some interval, then the convergence is not guaranteed and we would need to handle this case
separately. From now on, assume F is strictly increasing. Let u ∈ (0, 1) be fixed. Let x = F←(u).
Since F is continuous, for any ϵ > 0, we have F (x− ϵ) < u < F (x+ ϵ). The condition Fn → F in
distribution means Fn(y) → F (y) for all points y where F is continuous. Since we assumed F is
continuous everywhere, this convergence holds for all y ∈ R. So, for our chosen ϵ > 0, we can find
an integer N such that for all n ≥ N :

Fn(x− ϵ) < u < Fn(x+ ϵ)

This is because Fn(x− ϵ) → F (x− ϵ) < u and Fn(x+ ϵ) → F (x+ ϵ) > u. Now we use the property
from 1(a) on this pair of inequalities:

• Fn(x− ϵ) < u implies that x− ϵ < F←n (u).

• u < Fn(x+ ϵ) implies that F←n (u) ≤ x+ ϵ.

Combining these gives, for n ≥ N :

x− ϵ < F←n (u) ≤ x+ ϵ

which means |F←n (u)− x| ≤ ϵ. Since x = F←(u), this is exactly

|F←n (u)− F←(u)| ≤ ϵ.

This holds for any ϵ > 0 (by choosing N large enough), so we have shown that limn→∞ F
←
n (u) =

F←(u) for any u ∈ (0, 1).

Almost Sure Convergence

b) Consider the probability space (Ω,F ,P) = ((0, 1),B(0, 1), λ), where λ is the Lebesgue measure.
Propose a way to construct the sequence (Yn, n ≥ 1) and the limiting variable Y on this space that
satisfy the claim of the theorem. Do Yn and Y have the correct marginal distributions in your
construction?

Solution: Let U be the random variable defined by U(ω) = ω. This is a random variable with a
uniform distribution on (0, 1). Define Yn = F←n (U) and Y = F←(U). From part (a), the random
variable Yn = F←n (U) has the CDF Fn. This is the same distribution as the original random
variable Xn. Similarly, the random variable Y = F←(U) has the CDF F , which is the distribution
of X.
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c) Using the result from part (a), show that Yn → Y almost surely. Conclude the proof of the
theorem.

Solution: By part (a), we showed that for any fixed u ∈ (0, 1), the sequence of real numbers F←n (u)
converges to F←(u). In our probability space, this means that for any ω ∈ (0, 1), the sequence of
real numbers Yn(ω) = F←n (ω) converges to Y (ω) = F←(ω). A sequence of random variables that
converges for every outcome ω in the sample space is said to converge almost surely (in this case,
it converges everywhere, which is stronger). Thus, Yn → Y almost surely.

We have successfully constructed a sequence of random variables (Yn) and a random variable Y on
a single probability space ((0, 1),B(0, 1), λ) such that:

1. For each n, Yn has the same distribution as Xn.

2. Y has the same distribution as X.

3. Yn → Y almost surely as n→ ∞.

This completes the proof of Skorokhod’s representation theorem for the case where the limiting
distribution function F is continuous.

Application

d) Let (Xn, n ≥ 1) with Xn ∼ N (0, 1 + 1/n) and let X ∼ N (0, 1). First verify directly (e.g. via

point-wise convergence of characteristic functions) that Xn
d→ X.

Solution: Their characteristic functions are

φXn(t) = exp
(
−1+1/n

2 t2
)
−−−→
n→∞

exp
(
− t2

2

)
= φX(t), t ∈ R,

so Xn
d→ X.

e) Give an explicit Skorokhod representation (Yn, n ≥ 1) and Y in this Gaussian case. Show that

Yn
d
= Xn, Y

d
= X, and Yn → Y almost surely.

Solution: On ((0, 1),B(0, 1), λ) let U(ω) = ω. Denote the standard normal CDF with Φ. We set
Z = Φ−1(U); then Z ∼ N (0, 1). Define

Yn =
√
1 + 1

n Z =
√

1 + 1
n Φ−1(U), Y = Z = Φ−1(U).

Since scaling a standard normal by
√
1 + 1/n produces N (0, 1+1/n), we have Yn

d
= Xn and Y

d
= X.

For each ω, Z(ω) is a fixed real number and
√
1 + 1/n → 1, hence Yn(ω) → Y (ω); thus Yn → Y

almost surely. This gives an explicit Skorokhod representation in the Gaussian case: the original
weak convergence is realized by a.s. convergence of (Yn).
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