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Exercice 1.

a)
2x+ 1

2(x+ 2)
− 3x2

(x+ 2)2
=

(2x+ 1)(x+ 2)− 3x2 · 2
2(x+ 2)2

=
2x2 + 5x+ 2− 6x2

2(x+ 2)2
=

−4x2 + 5x+ 2

2(x+ 2)2
.

b)
x+ 4

x− 5
+

3

5− x
=

x+ 4

x− 5
− 3

x− 5
=

x+ 4− 3

x− 5
=

x+ 1

x− 5
.

c)
x

x2 − y2
− x

(x+ y)2
+

1

2(y − x)
=

x

(x+ y)(x− y)
− x

(x+ y)2
− 1

2(x− y)
=

x · 2(x+ y)− x · 2(x− y)− (x+ y)2

2(x+ y)2(x− y)
=

2x2 + 2xy − 2x2 + 2xy − x2 − 2xy − y2

2(x+ y)2(x− y)
=

−(x2 − 2xy + y2)

2(x+ y)2(x− y)
=

−(x− y)2

2(x+ y)2(x− y)
=

−(x− y)

2(x+ y)2
.

d)
x− 1

x+ 1
+

x+ 1

x2 + 1
=

(x− 1)(x2 + 1) + (x+ 1)2

(x+ 1)(x2 + 1)
=

x3 − x2 + x− 1 + x2 + 2x+ 1

(x+ 1)(x2 + 1)
=

x3 + 3x

(x+ 1)(x2 + 1)
=

x(x2 + 3)

(x+ 1)(x2 + 1)
.

e)
x+ y

x− y
+

x− 2y

x+ y
+

x2 + 3y2

y2 − x2
=

(x+ y)(x+ y) + (x− 2y)(x− y)− (x2 + 3y2)

(x− y)(x+ y)
=

x2 + 2xy + y2 + x2 − xy − 2xy + 2y2 − x2 − 3y2

(x− y)(x+ y)
=

x2 − xy

(x− y)(x+ y)
=

x(x− y)

(x− y)(x+ y)
=

x

x+ y

f)
x− 3

x+ 3
− 4x− 6y

xy + 3y + 2x+ 6
+

y + 6

y + 2
=

(x− 3)(y + 2)− (4x− 6y) + (y + 6)(x+ 3)

(x+ 3)(y + 2)
=

xy + 2x− 3y − 6− 4x+ 6y + xy + 3y + 6x+ 18

(x+ 3)(y + 2)
=

2xy + 4x+ 6y + 12

(x+ 3)(y + 2)
=

2(x+ 3)(y + 2)

(x+ 3)(y + 2)
= 2.

g)
−3x4

(x+ 1)4
+

4x3(x+ 1)3

(x+ 1)6
=

−3x4 + 4x3(x+ 1)

(x+ 1)4
=

−3x4 + 4x4 + 4x3

(x+ 1)4
=

x3(x+ 4)

(x+ 1)4
.

h)
2

5b
− 4

3a3
− 1

6a2b2
=

2 · 6a3b− 4 · 10b2 − 1 · 5a
30a3b2

=
12a3b− 40b2 − 5a

30a3b2
.

i)
3x

3x2 − 12x
+

1

6x
=

6x+ (x− 4)

6x(x− 4)
=

7x− 4

6x(x− 4)
.

j)
m− 1

m2 − 4m+ 4
+

m+ 3

m2 − 4
+

2

2−m
=

(m− 1)(m+ 2) + (m+ 3)(m− 2)− 2(m− 2)(m+ 2)

(m− 2)2(m+ 2)
=

m2 −m− 2 + 2m+m2 − 2m+ 3m− 6− 2m2 + 8

(m− 2)2(m+ 2)
=

2m

(m− 2)2(m+ 2)
.

Exercice 2.

a)

a

b
− b

a
a

b
+ 2 +

b

a

=

a2 − b2

ab
a2 + 2ab+ b2

ab

=
a2 − b2

ab
· ab

a2 + 2ab+ b2
=

a2 − b2

a2 + 2ab+ b2
=

(a− b)(a+ b)

(a+ b)2
=

a− b

a+ b
.

b)

2

x+ h
− 2

x
h

=

2x− 2(x+ h)

x(x+ h)
h

1

=
2x− 2x− 2h

x(x+ h)
· 1
h
=

−2h

x(x+ h)h
=

−2

x(x+ h)
.

c)

y − 2

y2 − 4y + 4

y2 + 2y

y2 + 4y + 4

=

y − 2

(y − 2)2

y(y + 2)

(y + 2)2

=
y − 2

(y − 2)2
· (y + 2)2

y(y + 2)
=

y + 2

(y − 2)y
.

d)
u− 1

u

1− 1

u2

=

u2 − 1

u
u2 − 1

u2

=
u2 − 1

u
· u2

u2 − 1
= u.

e)

x− 1

1− 1

x
x

x+ 1
− x

1− x

=

x− 1
x− 1

x
x(x− 1)

(x+ 1)(x− 1)
+

x(x+ 1)

(x− 1)(x+ 1)

=

x(x− 1)

x− 1
− x

x− 1
2x2

(x+ 1)(x− 1)

=
x(x− 2)

x− 1
· (x+ 1)(x− 1)

2x2

=
(x− 2)(x+ 1)

2x
.
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f)

1− 1

1 +
x

y

1− 1

1− x

y

=

1− 1
y + x

y

1− 1
y − x

y

=

y + x

y + x
− y

y + x
y − x

y − x
− y

y − x

=
x

y + x
· y − x

−x
=

x− y

x+ y
.

g)

4

y
− y

2

y2
− 1

2

=

4− y2

y

4− y2

2y2

=
4− y2

y
· 2y2

4− y2
= 2y.

Exercice 3. D’une part,

f(x)

g(x)
+

(
F (x)

G(x)
+

p(x)

q(x)

)
=

f(x)

g(x)
+

(
F (x)q(x) + p(x)G(x)

G(x)q(x)

)
=

f(x)G(x)q(x) + F (x)q(x)g(x) + p(x)G(x)g(x)

G(x)q(x)g(x)
,

d’autre part,(
f(x)

g(x)
+

F (x)

G(x)

)
+

p(x)

q(x)
=

f(x)G(x) + g(x)F (x)

g(x)G(x)
+

p(x)

q(x)
=

f(x)G(x)q(x) + g(x)F (x)q(x) + p(x)g(x)G(x)

g(x)G(x)q(x)
,

comme la multiplication des polynômes est commutative, on peut égaler les deux parties et obtenir le résultat.

Exercice 4. D’une part,

f(x)

g(x)

(
F (x)

G(x)
+

p(x)

q(x)

)
=

f(x)

g(x)

(
F (x)q(x) + p(x)G(x)

G(x)q(x)

)
=

f(x)F (x)q(x) + f(x)p(x)G(x)

g(x)G(x)q(x)
,

et d’autre part,
f(x)

g(x)

F (x)

G(x)
+

f(x)

g(x)

p(x)

q(x)
=

f(x)F (x)q(x) + f(x)p(x)G(x)

g(x)G(x)q(x)
.

On peut ainsi égaler les deux membres et l’énoncé est démontré.

Exercice 5. Vérifions tout d’abord que (K(x),+) forme un groupe abélien :
• Le fait que l’addition est associative a été vérifié à l’Exercice 3.
• Vérifions que le polynôme nul 0 ∈ K(x) est l’élément neutre de l’addition :

0 +
f(x)

g(x)
=

0

1
+

f(x)

g(x)
=

0 · g(x)
g(x)

+
f(x)

g(x)
=

0 + f(x)

g(x)
=

f(x)

g(x)
;

de même, f(x)
g(x) + 0 = f(x)

g(x) . Bien sûr, si l’on montre d’abord la commutativité de l’addition, cette dernière
vérification est inutile.

• Toute fraction f(x)
g(x) possède un inverse −f(x)

g(x) pour l’addition (c’est-à-dire un opposé) :

−f(x)

g(x)
+

f(x)

g(x)
=

−f(x) + f(x)

g(x)
=

0

g(x)
= 0;

de même, f(x)
g(x) + −f(x)

g(x) = 0. Ici aussi, si l’on a déjà montré que l’addition est commutative, cette dernière
vérification est inutile.

• L’addition est commutative :
f(x)

g(x)
+

p(x)

q(x)
=

f(x)q(x) + p(x)g(x)

g(x)q(x)
.

et
p(x)

q(x)
+

f(x)

g(x)
=

p(x)g(x) + f(x)q(x)

q(x)g(x)
.

Ces deux fractions sont égales car l’addition et la multiplication dans K[x] sont commutatives.

Vérifions maintenant que (K(x) \ {0}, ·) forme un groupe abélien :
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• La multiplication est associative : on a(
f(x)

g(x)
· p(x)
q(x)

)
· r(x)
s(x)

=
f(x)p(x)

g(x)q(x)
· r(x)
s(x)

=
(f(x)p(x))r(x)

(g(x)q(x))s(x)

et
f(x)

g(x)
·
(
p(x)

q(x)
· r(x)
s(x)

)
=

f(x)

g(x)
· p(x)r(x)
q(x)s(x)

=
f(x)(p(x)r(x))

g(x)(q(x)s(x))
.

Les deux fractions de droite sont égales car la multiplication dans K[x] est associative.
• Pour simplifier les vérifications de l’élément neutre et de l’inverse multiplicatifs, vérifions que la multiplication

est commutative :
f(x)

g(x)
· p(x)
q(x)

=
f(x)p(x)

g(x)q(x)
=

p(x)f(x)

q(x)g(x)
=

p(x)

q(x)
· f(x)
g(x)

car la multiplication de polynômes est commutative.
• Vérifions que le polynôme constant 1 ∈ K(x) est l’élément neutre de la multiplication :

1 · f(x)
g(x)

=
1

1
· f(x)
g(x)

=
1 · f(x)
1 · g(x)

=
f(x)

g(x)
.

Par commutativitéde la multiplication, on a aussi f(x)
g(x) · 1 = f(x)

g(x) .

• Toute fraction f(x)
g(x) possède un inverse g(x)

f(x) pour la multiplication :

f(x)

g(x)
· g(x)
f(x)

=
f(x)g(x)

g(x)f(x)
=

1

1
= 1

et par commutativité de la multiplication, g(x)
f(x) ·

f(x)
g(x) = 1. Ces égalités sont valables car la multiplication dans

K[x] est commutative.
Finalement, la distributivité de la mutliplication par rapport à l’addition a été montrée en partie à l’Exercice 4.
L’autre partie (la multiplication d’une somme à droite), découle de la commutativité de la multiplication dans
K(x).

Exercice 6.

a) D’une part

1

x
+

1

y
+

1

z
1

xy
+

1

xz
+

1

yz

· x+ y + z

xy + xz + yz
=

yz + xz + xy

xyz
z + y + x

xyz

· x+ y + z

xy + xz + yz
=

yz + xz + xy

xyz
· xyz

z + y + x
· x+ y + z

xy + xz + yz
= 1,

et d’autre part
x+ 3y + 5z
5

xy
+

3

xz
+

1

yz

· 1

xyz
=

x+ 3y + 5z
5z + 3y + x

xyz

· 1

xyz
=

x+ 3y + 5z

1
· xyz

5z + 3y + x
· 1

xyz
= 1,

ainsi l’égalité est démontrée.

b) D’une part (x+ y + z)

(
1

x
+

1

y
+

1

z

)
= (x+ y + z)

yz + xz + xy

xyz
=

(x+ y + z)(yz + xz + xy)

xyz
=

xyz + x2z + x2y + y2z + xyz + xy2 + yz2 + xz2 + xyz

xyz
,

d’autre part
(x+ y)(y + z)(x+ z)

xyz
+ 1 =

(x+ y)(y + z)(x+ z) + xyz

xyz
=

(x+ y)(xy + yz + xz + z2) + xyz

xyz
=

x2y + xyz + x2z + xz2 + xy2 + y2z + xyz + yz2 + xyz

xyz
,

en réorganisant les termes des deux côtés, l’égalité est démontrée.

Exercice 7.
a) Si f1(x)

g1(x)
= f2(x)

g2(x)
sont deux représentants de la même fraction rationnelle, alors f1(x)g2(x) = f2(x)g1(x) ce

qui implique que deg(f1(x)g2(x)) = deg(f2(x)g1(x)). Comme le degré d’un produit de polynômes est égal à
la somme des degrés de chacun de ces poylnômes, on en déduit que deg(f1(x)) + deg(g2(x)) = deg(f2(x)) +
deg(g1(x)) et donc que deg(f1(x))− deg(f2(x)) = deg(g1(x))− deg(g2(x)). Cette dernière égalité prouve que
f1(x)
g1(x)

et f2(x)
g2(x)

ont le même degré.
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b) Par définition, le degré de 1
xn est égal à 0− n = −n.

c) Montrons que

deg

(
f(x)

g(x)
+

F (x)

G(x)

)
≤ max

(
f(x)

g(x)
,
F (x)

G(x)

)
et qu’il se peut que l’inégalité soit stricte.
Nous avons

f(x)

g(x)
+

F (x)

G(x)
=

f(x)G(x) + F (x)g(x)

g(x)G(x)
.

Alors

deg

(
f(x)

g(x)
+

F (x)

G(x)

)
= deg

(
f(x)G(x) + F (x)g(x)

g(x)G(x)

)
= deg(f(x)G(x) + F (x)g(x))− deg(g(x)G(x)).

En examinant le premier terme, on voit que l’on cherche le degré d’une somme de polynôme, celui-ci sera
plus petit que le maximum des degrés de f(x)G(x) ou F (x)g(x). En effet, si f(x)G(x) = anx

n + p(x) et
F (x)g(x) = bmxm+ q(x) où p(x) respectivement q(x) sont des polynômes de degré plus petit ou égal à n− 1,
respectivement à m− 1. Alors la somme sera anx

n + bmxm + p(x) + q(x). Ainsi le degré de cette somme sera
plus petit ou égal à max(m,n). Remarquons que l’égalité est fausse précisément lorsque anx

n + bmxm = 0
(c’est-à-dire si m = n et bm = −an), car alors f(x)G(x)+F (x)g(x) = p(x)+ q(x) sera de degré plus petit ou
égal à n− 1 (ceci justifie que l’inégalité ci-dessous est stricte dans certains cas). En constatant encore que le
degré d’un produit de polynôme est égal à la somme des degrés, on peut écrire

deg(f(x)G(x) + F (x)g(x))− deg(g(x)G(x))

≤ max(deg(f(x)) + deg(G(x)),deg(F (x)) + deg(g(x)))− deg(g(x))− deg(G(x))

= max(deg(f(x))− deg(g(x)),deg(F (x))− deg(G(x)))

= max

(
deg

(
f(x)

g(x)

)
,deg

(
F (x)

G(x)

))
.

d) deg
(

f(x)
g(x) ·

F (x)
G(x)

)
= deg

(
f(x)F (x)
g(x)G(x)

)
= deg(f(x)F (x))−deg(g(x)G(x)) = deg(f(x))+deg(F (x))−deg(g(x))−

deg(G(x)) = deg
(

f(x)
g(x)

)
+ deg

(
F (x)
G(x)

)
.

e) Faux. Si f(x) = x2 + 1 et g(x) = x, alors f(x)
g(x) = x2+1

x est de degré 2− 1 = 1 mais f(1)
g(1) = 2 ̸= f(2)

g(2) = 5
2 , ainsi

f(x)
g(x) n’est pas constante.

4


