Cours Euler — 2¢

Corrigé 15

2025-2026

Exercice 1.
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Exercice 2.
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Exercice 3. D’une part,

flz) | <F(w) p(w)) _ @) (F(x)q(x) +p(x)G(x)) _ f@)G(x)q(x) + F(x)q(x)g(x) + p(2)G(z)g(x)

o@ \e@ Taw)) " 9@ G(2)a(@) G(@)q(z)g(x) ’

d’autre part,

(f(x) F(ﬂ«"))+p($) f(@)G(x) + g(x)F(x)  plr) _ f(2)G(x)q(x) + g(2)F(2)q(x) + p(r)g(x)G(x)

o@ T Gw)) T T 9(2)G(z) @ T 9(2)G(z)q(z) ’

comme la multiplication des polyndémes est commutative, on peut égaler les deux parties et obtenir le résultat.

Exercice 4. D’une part,

f(x) (F(w) p(w)) G (F(w)CJ(%) +p(x)G($)) _ f@F(@)q(x) + f(2)p(z)G(x)

a0 \G@) " a@)) 9w G@)q() 1@)G)a(x) ’

et d’autre part,

flz) F(z) | f(z)p(x) _ f@)F(z)a(x) + f@)p(e)Gle)

g(x) G(z)  g(z) q(x) 9(z)G(z)q(x)

On peut ainsi égaler les deux membres et ’énoncé est démontré.

Exercice 5. Vérifions tout d’abord que (K (z),+) forme un groupe abélien :
e Le fait que I'addition est associative a été vérifié a I’Exercice 3.
e Vérifions que le polynéme nul 0 € K(x) est I’élément neutre de I’addition :
fle) 0 fl@) 0-g(x)  fl&) 0+ f(x) [flx)

9@ 1 g " 9@ e@ e g

de méme, ;gg +0 = )gcgg Bien stir, si 'on montre d’abord la commutativité de 1’addition, cette derniére
vérification est inutile.

e Toute fraction & posséde un inverse _g]zg) pour laddition (c’est-a-dire un opposé) :

g(x)
f@) | f)  —f@) i) 0
o) T = e e

de méme, g E;; + _g]ZS)) = 0. Ici aussi, si 'on a déja montré que ’addition est commutative, cette derniére
vérification est inutile.

e [’addition est commutative :

f(z) N p(e) _ f@)a(z) + p(x)g(z)

g9(z) "~ qlx) g(z)q(x)
) p) | S(@) _ pladg(e) + S @)a(a)
g(x) ~ g() g(@)g(x)

Ces deux fractions sont égales car Paddition et la multiplication dans K[x] sont commutatives.

Veérifions maintenant que (K (z) \ {0}, ) forme un groupe abélien :



e La multiplication est associative : on a

(f(w) .p(fﬂ)) () _ f@p(x) r(x) _ (f(@)p(@))r(z)
9(@) q(x)) s(x)  glx)q(z) s(x) (9(z)q(x))s(x)

fz) <p(:v) , T(ﬂv)) _ f@) p@)r(@) _ f)(p(z)r(x))
g(x) \q(@) s(@)) glx) q@)s(z) g@)(gx)s(x))

Les deux fractions de droite sont égales car la multiplication dans K[z] est associative.

et

e Pour simplifier les vérifications de 1’élément neutre et de I'inverse multiplicatifs, vérifions que la multiplication

est commutative :
f@) plx) _ f@pl) p)fx) _p) flz)

g(a) ql@)  glx)g(z)  g(x)g(z)  aq(z) g(x)
car la multiplication de polyndémes est commutative.

e Vérifions que le polynéme constant 1 € K(z) est ’élément neutre de la multiplication :

ACO S S (CONS S {COR {C))
g(x) glz) 1-g(x) glz)

Par commutativitéde la multiplication, on a aussi @ 1= qé;”)) .

e Toute fraction % posséde un inverse gE % pour la multiplication :

1
1

f@) o) f@en) 1
g(@) fx)  gla)f(@) 1
et par commutativité de la multiplication, ?(x% L; 1. Ces égalités sont valables car la multiplication dans

K|[x] est commutative.

Finalement, la distributivité de la mutliplication par rapport & I'addition a été montrée en partie & I’Exercice 4.

L’autre partie (la multiplication d’une somme & droite), découle de la commutativité de la multiplication dans
K(x).

Exercice 6.

1 1 1 Yz +xz+ Y
a) D’une part vy 2 rhytE Yz vy tE
1 i_,_i TY + T2+ Y2 zty+tz Ty + T2+ Yz
Ty T2 Yz Tyz
Yz +xrz + 2y TYz T+y+z
Tyz 24yt xyt+aoztyz ’
¢ d'aut ¢ z+ 3y + 5z 1 r+3y+5z 1 x4+ 3y + 5z TYZ 1 1
et d’autre part ———m5—+  — = ¥—po—— - — = . =
P i+i+i ryz 92 +3Y+T ayz 1 Sz +3y+zx wyz
xy T2 yz ryz

ainsi I'égalité est démontrée.

1

1 z+xz+x r+y+2)(yz +xz+x
b)Dunepart(w+y+z)( +y+ >=(ac+y+z)y y:( v+ y):

xyz TYyz

rYz + 22z 4 :1:2y + yzz + xyz + a:y + yz2 + 2+ TYZ
TYZ ’

d’autre part
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en réorganisant les termes des deux cotés, 1’égalité est démontrée.

Exercice 7.

a) Si fl(fg gzgfg sont deux représentants de la méme fraction rationnelle, alors fi(x)g2(z) = fa(x)g1(z) ce

qui implique que deg(f1(x)g2(z)) = deg(f2(x)g1(z)). Comme le degré d’un produit de polyndmes est égal a
la somme des degrés de chacun de ces poylnomes, on en déduit que deg(f1(z)) + deg(g2(x)) = deg(fa(x)) +
deg(g1(x)) et donc que deg(f1(z)) — deg(f2(z)) = deg(g1(x)) — deg(g2(x)). Cette derniére égalité prouve que

% et giéi; ont le méme degré.



b) Par définition, le degré de %n est égal 4 0 —n = —n.

(19 4 PO < e (12, 210)

c) Montrons que

g(x) ~ G(z)

et qu’il se peut que 'inégalité soit stricte.

Nous avons
f@) | F(@) _ [@)G() + Fla)g(o)
e R CTEs B TclE R
Alors
J@) | Fl) =de [@)G(z) + Flw)g(x) =de x)G(x x)g(z)) — deg(g(z)G(z
deg (1158 4 S0} — g (HIEED LAY g (0)60) + F(algl) - delal) Gl

En examinant le premier terme, on voit que ’on cherche le degré d’une somme de polynéme, celui-ci sera
plus petit que le maximum des degrés de f(z)G(x) ou F(z)g(z). En effet, si f(z)G(x) = anz™ + p(z) et
F(z)g(x) = bpx™ + q(z) ou p(z) respectivement ¢(z) sont des polynomes de degré plus petit ou égal a n— 1,
respectivement a m — 1. Alors la somme sera a,a" + b, 2™ + p(z) + ¢(x). Ainsi le degré de cette somme sera
plus petit ou égal & max(m,n). Remarquons que I’égalité est fausse précisément lorsque a,z" + bpx™ = 0
(c’est-a-dire si m = n et by, = —ay), car alors f(z)G(z) + F(x)g(z) = p(z) + g(z) sera de degré plus petit ou
égal & n — 1 (ceci justifie que I'inégalité ci-dessous est stricte dans certains cas). En constatant encore que le
degré d’un produit de polyndéme est égal a la somme des degrés, on peut écrire

deg(f(2)G () + F(x)g(x)) — deg(g(x)G (x))
< max(deg(f(x)) + deg(G(x)), deg(F(x)) + deg(g(x))) — deg(g(x)) — deg(G(x))
= max(deg(f(z)) — deg(g(x)), deg(F(x)) — deg(G(x)))

_ fz) Fz)
= (s (J157) s (57 )
d) deg (£ £ = deg (gg;f;gz;) = deg(/(2)F(x)) — deg(g(2)G(x)) = deg(f(x)) +deg(F(x)) — deg(g(x)) -
(x

deg(G(z)) = deg g(mg) + deg( Glr g) .

e) Faux. Si f(x) = a2 + 1 et g(z) = x, alors L&) =

;E;g n’est pas constante.

=4 . .
y = 3, ainsi




