
Notes de cours
Semaine 14

Cours Turing

1 La recherche de (très) grands nombres premiers

Bon nombre d’algorithmes de cryptographie à clé publique, que nous découvrirons dans les pro-
chaines semaines, reposent sur un ingrédient essentiel : l’utilisation de grands nombres premiers
(pour rappel, un nombre premier est un nombre qui n’admet que deux diviseurs distincts : 1 et
lui-même). Par “grands nombres premiers”, on entend ici de vraiment grands nombres premiers,
par exemple des nombres à 100 chiffres. La tâche de trouver de tels nombres est un peu ardue,
mais nous allons progresser pas à pas.

1.1 Tester tous les diviseurs

Une première méthode naïve pour tester si un grand nombre N est premier est d’essayer de le
diviser par tous les nombres compris entre 1 et N − 1. Mais si N est un nombre à 100 chiffres,
il y a 10100 diviseurs potentiels à tester, à savoir plus que le nombre d’atomes dans l’univers !
Donc cette méthode reste complètement inapplicable dans ce cas.

On peut réduire sensiblement ce nombre d’opérations en observant la chose suivante : si un
nombre N n’est pas premier et est donc le produit de deux nombres P et Q, c’est forcément le cas
que soit P soit Q est plus petit ou égal à

√
N (sinon, on obtiendrait que P ·Q >

√
N ·

√
N = N).

Et donc, pour tester si un nombre N est premier, il suffit de tester tous ses diviseurs potentiels
de 2 jusqu’à

√
N , et non de 2 jusqu’à N . Alors certes,

√
N est beaucoup plus petit que N , mais

lorsque N = 10100, on obtient que
√
N = 10100/2 = 1050, ce qui représente un nombre encore

extrêmement grand !

1.2 Le crible d’Eratosthène (environ 200 avant J.-C.)

Une autre méthode pour trouver des nombres premiers est la suivante : l’idée est de dresser
la liste de tous les nombres, puis de rayer systématiquement tous les nombres qui sont des
multiples de 2, de 3, de 5, etc. (notez que 4 étant un multiple de 2, il n’y pas besoin de rayer
les multiples de 4, qui sont donc tous aussi des multiples de 2) : le nombres qui restent sont les
nombres premiers. Voici une illustration de cette méthode, où les nombres premiers sont ceux
colorés en rose (auxquels il faut encore ajouter les premiers nombres de chaque autre couleur) :

1



Cette méthode est certes très intéressante pour établir la liste des nombres premiers existants,
mais devient de plus en plus lente lorsqu’on cherche de plus en plus grands nombres : ça n’est
donc pas ainsi qu’il faut procéder pour trouver des nombres premiers à 100 chiffres. . .

1.3 Le théorème des nombres premiers
(Hadamard et de la Vallée Poussin, 1896)

Pour de plus grands nombres, une question qui vient tout de suite à l’esprit est la suivante :
est-ce que des nombres premiers à 100 chiffres existent ? (car si tel n’est pas le cas, mieux vaut
arrêter tout de suite. . .). A priori, vu qu’un nombre à 100 chiffres est de l’ordre de 10100, il a donc
aussi de l’ordre de 10100 diviseurs potentiels : il est donc justifié de se poser la question ! C’est
cependant un fait qui est connu depuis Euclide : il existent une infinité de nombres premiers.

Mais vient maintenant la deuxième question : vu que plus un nombre grandit, plus il a de
diviseurs potentiels, il doit donc être vrai que les nombres premiers se raréfient plus on va vers
de grands nombres. Par exemple :

- parmi les 10 premiers nombres, on trouve 4 nombres premiers (donc 40%) ;

- parmi les 100 premiers nombres, on trouve 25 nombres premiers (donc 25%) ;

- parmi les 1000 premiers nombres, on trouve 168 nombres premiers (donc 17% environ) ;

- etc.

Si les nombres premiers se raréfiaient trop lorsque qu’on va vers de grandes valeurs, la recherche
de grands nombres premiers serait problématique. . . Heureusement, le théorème des nombres
premiers nous dit que cette raréfaction est plutôt lente, à savoir :

π(N), le nombre de nombres premiers plus petits ou égaux à un nombre donné N ,
est approximativement donné par π(N) ≃ N

ln(N)

2



où ln(N) est le logarithme népérien de N . Ceci veut dire que la proportion de nombres premiers
plus petits ou égaux à N est de l’ordre de 1

ln(N)
.

La fonction ln(N) est une fonction qui grandit très lentement avec N (par exemple, ln(1′000) ≃
6.9, tandis que ln(1′000′000) ≃ 13.8), donc la proportion 1

ln(N)
décroît très lentement avec N .

A nouveau, si N est un nombre à 100 chiffres, qu’implique ce résultat ? Dans ce cas, N ≃ 10100 et
on peut calculer que ln(N) ≃ 230 : même si N est gigantesque, ln(N) a une valeur assez faible :
ceci veut dire en pratique que si on tire complètement au hasard un nombre à 100 chiffres, on
a environ une chance sur 230 de tomber sur un nombre premier ; c’est une probabilité certes
assez faible, mais suffisamment grande pour ne pas se décourager, car en effectuant 230 essais,
on obtient une probabilité non-négligeable de tomber au moins une fois sur un nombre premier.
Reste maintenant la question épineuse de trouver une manière efficace de tester si un nombre
donné N est premier : il existe heureusement une façon efficace de procéder ! Mais elle demande
un peu de travail, en particulier de revenir à l’arithmétique modulaire.

1.4 Le petit théorème de Fermat

En quoi l’arithmétique modulaire peut-elle nous être utile pour trouver des nombres premiers ?
La première relation avec les nombres premiers est la suivante, aussi connue sous le nom de
petit théorème de Fermat 1 :

Si N est un nombre premier, alors AN−1 (mod N) = 1 pour tout nombre entier 1 ≤ A < N .

Malheureusement, l’assertion ne va pas dans le bon sens ! En effet, si on trouve un nombre
1 ≤ A < N tel que AN−1 (mod N) = 1, ceci n’implique pas que N est un nombre premier.

Par contre, on peut utiliser la contraposée de ce théorème, à savoir :

S’il existe un nombre entier 2 ≤ A < N tel que AN−1 (mod N) ̸= 1, alors N n’est pas un
nombre premier (noter qu’il est impossible ici que A = 1, car 1N−1 (mod N) = 1 pour tout N).

Ainsi, on a un outil pour dénicher des grands nombres qui ne sont pas premiers. “A quoi bon ?”
direz-vous, car ce qui nous intéresse, ce sont les grands nombres premiers. . . Il se trouve qu’une
extension du petit théorème de Fermat va nous aider. Celle-ci dit la chose suivante :

S’il existe un nombre 2 ≤ A ≤ N − 1 tel que PGDC(A,N) = 1 et AN−1 (mod N) ̸= 1, alors
BN−1 (mod N) ̸= 1 pour au moins la moitié des autres nombres B compris entre 2 et N − 1.

Ce que dit ce résultat pour l’essentiel (si on fait abstraction d’un petit détail ; voir la 2e remarque
ci-dessous), c’est : si on choisit un nombre A uniformément au hasard entre 2 et N −1 et qu’on
trouve que AN−1 (mod N) = 1, alors il y a au moins 50% de chances pour que N soit un nombre

1. Attention à ne pas confondre ici avec le grand ou dernier théorème de Fermat, qui est resté un problème
ouvert pendant de nombreuses années, plus précisément de 1637, date de son énoncé, à 1995, date de la parution
de sa démonstration par Andrew Wiles.

3



premier. En effet, puisque si N n’était pas premier, au moins la moitié des nombres A entre 2 et
N −1 donneraient AN−1 (mod N) ̸= 1). Nous allons maintenant voir en détail quelle utilisation
faire de ce résultat pour transformer l’essai, car il est clair qu’on ne peut pas se satisfaire d’un
algorithme qui se trompe une fois sur deux !

1.5 Bis repetita. . .

L’idée est maintenant de répéter l’expérience précédente, en tirant plusieurs nombres A1, A2, . . . , Ak

au hasard, chacun entre 2 et N − 1, et indépendamment les uns des autres (d’où l’importance
d’avoir un bon générateur de nombres aléatoires). Pour tous ces nombres, on teste si

AN−1
1 (mod N) = 1, AN−1

2 (mod N) = 1, . . . , AN−1
k (mod N) = 1

- Si on n’obtient pas le résultat 1 pour un des nombres A1, A2, . . . , Ak, alors on sait par le petit
théorème de Fermat (plus précisément, par sa contraposée), que N n’est pas premier. Fin de la
discussion : il faut essayer une nouvelle valeur de N .

- Si par contre c’est le cas qu’on obtient le résultat 1 pour chacun des nombres A1, A2, . . . , Ak,
alors qu’est-ce que ça nous dit ? Par ce qui précède, si N n’est pas un nombre premier, alors il
y a au moins 50% de chances, pour chaque nombre A, que AN−1 (mod N) ̸= 1. Donc dans ce
cas, il faudrait être vraiment malchanceux pour obtenir le résultat 1 pour chacun des nombres
A1, A2, . . . , Ak. Plus précisément, la chance que ça arrive vaut au plus :

p =
1

2
· 1
2
· · · 1

2︸ ︷︷ ︸
k fois

=
1

2k

Pour une valeur même assez petite de k, cette probabilité p est très proche de 0. Par exemple :
si k = 10, alors p ≃ 0, 001 ; si k = 20, alors p ≃ 0, 000001, et si k = 30, alors p ≃ 0, 000000001.
En conclusion : si on n’obtient que des résultats 1 aux k tests ci-dessus, on peut déclarer avec
confiance que N est un nombre premier (à noter que si N est un nombre premier, alors par le
petit théorème de Fermat, on sait qu’on obtiendra toujours le résultat 1).

Remarques

- Il peut sembler assez troublant que pour vérifier une propriété déterministe d’un nombre entier,
à savoir ici sa primalité, on ait recours au hasard. Par ce qui précède, vous voyez cependant
que ce hasard peut être réduit “autant qu’on veut", en assez peu d’étapes. En pratique, c’est
tout à fait acceptable ! Il existe d’ailleurs une pléthore d’algorithmes qui font appel au hasard
pour résoudre des problèmes déterministes. Sans le hasard, nos ordinateurs modernes seraient
beaucoup moins puissants !

- Un détail a été omis dans la présentation qui précède : il existe quelques nombres entiers N
(pas si nombreux, mais quand-même), qui possèdent la propriété étrange de ne pas être premiers
tout en vérifiant AN−1 (mod N) = 1 pour toutes les valeurs de A entre 2 et N −1. Ces nombres
sont appelés les nombres de Carmichael. Le plus petit d’entre eux est N = 561 = 17 · 33. Pour
gérer ce problème, un autre algorithme est nécessaire : l’algorithme de Miller-Rabin.

4



Et pour finir, reste une question cruciale : est-ce qu’avec tout ce travail, nous avons gagné quoi
que ce soit par rapport à l’algorithme qui teste tous les diviseurs de N allant de 2 à

√
N ? ? ?

Faisons un peu les comptes pour voir. . .

Comme mentionné au début de ce chapitre, l’algorithme classique demande d’effectuer de l’ordre
de 1050 divisions pour vérifier qu’un nombre à 100 chiffres est premier. De plus, comme déjà
vu ci-dessus, en tirant au hasard un nombre à 100 chiffres, on a environ une chance sur 230 de
tirer un nombre premier. Au total, on trouvera donc avec cette méthode un nombre premier
après

230 · 1050 opérations

en moyenne ; autrement dit, mieux vaut être patient !

Comparons maintenant avec la méthode vue plus haut : certes, on n’échappe pas au fait qu’il
faut tirer de l’ordre de 230 nombres N au hasard pour finalement tomber sur un nombre premier.
Mais combien d’opérations coûte à chaque fois le test proposé ci-dessus ? Pour fixer les idées,
disons qu’on effectue le test avec k = 30 nombres A tirés au hasard (ce qui rappelons-le mène à
une probabilité d’erreur inférieure ou égale à 0,000000001) : pour chaque nombre, ceci consiste
à calculer

AN−1 (mod N) (1)

Heureusement, comme nous allons le voir ci-dessous, pour un nombre N à 100 chiffres, ce calcul
ne demande pas plus de deux millions d’opérations. Donc au total, le nombre d’opérations à
effectuer pour trouver un nombre premier à 100 chiffres avec cette méthode est de l’ordre de

230 · 30 · 2 millions ≃ 10 milliards

Or 10 milliards d’opérations, avec un ordinateur moderne, ça se fait très vite (en tout cas
beaucoup plus vite que 230 · 1050 opérations !).

Reste à comprendre pourquoi l’opération (1) ne demande pas plus de deux millions d’opérations.
Pour cela, il nous faut (clairement. . .) revenir un moment à l’arithmétique modulaire.

1.6 Exponentiation rapide (“square-and-multiply”)

Nous avons vu il y a deux semaines que “prendre des modulos” permet de simplifier des additions
et multiplications, mais c’est encore plus vrai lorsqu’on effectue une opération d’exponentiation
(qui commute également avec l’opération modulo) : pour calculer AB (mod N), on peut bien
sûr d’abord calculer AB, puis prendre la reste de la division de ce nombre par N pour trouver
le résultat, mais il est clairement plus facile d’utiliser le fait que

AB (mod N) = (A (mod N))B (mod N)

Voyons ça sur un exemple avec N = 11, A = 64 et B = 6 : pour calculer 646 (mod 11), calculons
d’abord 64 (mod 11) = 9, puis

646 (mod 11) = 96 (mod 11) = 531′441 (mod 11) = 9

5



? ? ? A vous entendre, vous ne semblez pas forcément convaincus. . . Certes, il est plus facile de
calculer 96 que 646, mais ça reste quand-même un calcul ardu ! En fait, on peut faire mieux que
ça. Regardez plutôt :

96 = 94+2 = 94 · 92 = (92)2 · 92 donc 96 (mod 11) = (92 (mod 11))2 (mod 11) · (92 (mod 11))

Pour effectuer ce calcul, on calcule d’abord 92 (mod 11) = 81 (mod 11) = 4, puis 42 (mod 11) =
16 (mod 11) = 5, et finalement la multiplication (5 · 4) (mod 11) = 20 (mod 11) = 9, qui nous
donne le résultat voulu : 646 (mod 11) = 9, sans avoir eu à effectuer de multiplications plus
compliquées que des livrets appris à l’école primaire.

Remarque : Attention ! Pour calculer AB (mod N), on peut remplacer A par A (mod N), mais
on ne peut pas remplacer B par B (mod N). Par exemple :

6417 (mod 11) ̸= 646 (mod 11)

En général, voyons maintenant comment cette méthode fonctionne : pour calculer AB tout
d’abord (en oubliant mod N pour l’instant), on utilise la décomposition binaire de B, c’est-à-
dire qu’on écrit B comme une somme de puissances de 2. Par exemple, pour B = 43, écrivons
B = 43 = 32 + 8 + 2 + 1, et donc

AB = A32+8+2+1 = A32 · A8 · A2 · A
Ainsi, en calculant successivement A, A2, A4 = (A2)2, A8 = (A4)2, A16 = (A8)2 et A32 = (A16)2,
on n’effectue que des carrés, et pour obtenir le résultat AB, il suffit de multiplier les quatre
termes A, A2, A8 et A32. Cette méthode, qui s’appelle en anglais “square-and-multiply”, permet
d’éviter le calcul direct de A43, qui est fastidieux.

Viennent maintenant s’ajouter les modulos : comme déjà mentionné ci-dessus, l’avantage d’ef-
fectuer des opérations modulo permet de se cantonner aux nombres compris entre 0 et N − 1.
Ainsi, si AB est potentiellement un (très) grand nombre, AB (mod N) sera par contre toujours
un nombre compris entre 0 et N − 1. Donc on peut refaire tout ce qu’on vient de faire en
prenant chaque fois systématiquement le résultat modulo N . Ainsi, on sait qu’on n’effectuera
que des carrés ou des multiplications avec des nombres compris entre 0 et N − 1.

Comptons maintenant le nombre d’opérations effectuées, en supposant que A,B,N sont tous
des nombres à 100 chiffres :

- effectuer le carré d’un nombre à 100 chiffres ou la multiplication de deux nombres à 100 chiffres
coûte 100 · 100 = 10′000 opérations environ (penser à la multiplication en colonnes) ;

- si B est un nombre à 100 chiffres, sa décomposition binaire sera également composée d’une
centaine de termes (à peu près) ;

- et donc pour calculer la série A, A2, A4, A8. . . jusqu’à A2100 (le tout modulo N), il faudra
effectuer environ 100 carrés, et encore 100 autres multiplications (au pire) des termes dont on
a besoin pour obtenir le résultat final AB. Ceci représente au total

2 · 100 · 10′000 = 2 millions d’opérations

comme annoncé plus haut ! Nous voilà donc arrivés à notre but, à savoir : effectuer un nombre
raisonnable d’opérations pour trouver un (très) grand nombre premier.

6


