IV. Applications linéaires

Le programme pour aujourd’hui est de continuer la discussion sur les bases d’un espace vectoriel,
puis d’étudier les applications entre espaces vectoriels qui préservent la structure a disposition,

c’est-a-dire la somme et action.

1 Dimension

Soit K un corps et V un K-espace vectoriel de dimension finie, ce qui signifie que V' admet
une base finie. Pour pouvoir définir la notion de dimension, nous devons montrer que le nombre

de vecteurs qu’il faut pour former une base ne varie pas d’une base a 'autre.

Proposition 1.1. Soit V un K-espace vectoriel de dimension finie.
Si B et B' sont deux bases de V', alors |B| = |B'|.

Démonstration. On a vu la semaine passée que le nombre d’éléments d’une partie libre de V' est

toujours inférieur ou égal au nombre d’éléments d’un systéme de générateurs.
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La définition suivante a donc un sens.

O

Définition 1.2. Soit V un K-espace vectoriel.

La dimension de V sur K, notée dimg (V') ou simplement dimV, est le nombre d’éléments que
contient une base de V.

Si V' n’est pas de dimension finie, on dit que la dimension de V' est infinie et alors, par définition,

aucune de ses bases n’est finie.
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Exemple 1.3.
Les espaces vectoriels F(R,R) ou celui des suites de nombres complexes sont de dimension infinie.
Par contre, dim R™ = n car la base canonique contient exactement n vecteurs et 1’espace vectoriel

Fos3[z]=" des polynomes de degré < n a coefficients dans le corps a 23 éléments est de dimension
(A h
Yu CoxX (A;X-,X ) emees ;X)Q,v\ u"wmc F.mse.

Clairement, si U est un sous-espace de V', dimU < dimV/, puisqu’on peut compléter une base
de U en une base de V. Ainsi, la dimension d’une somme de sous-espaces est plus grande ou égale

a la dimension de chacun d’eux. Mais comment calcule-t-on explicitement cette dimension ?

Proposition 1.4. Soient V' un K-espace vectoriel et U/ W C V' deux sous-espaces de V. Alors

dim(U + W) = dimU + dimW — dim(U N W)

himan =t shin -
Démonstration. Nous devons comparer les tailles des bases des sous-espaces en jeu.

Pour faire cela, commengons par choisir une base (vy, ..., v;) de l'intersection U N W.
C’est une famille libre de U que nous pouvons compléter en une base (vy, ..., vk, U1, ..., Uy) de U.
De méme on construit une base (vq, ..., v, Wy, ..., w,) de W.

bl SULW\:\' ae VV‘O"\‘;W qUaQ B = <V4 =, VR Wy, U \O\I,‘,....,V\/m)
ek tune bowe de UpW

Il s’agit d’un systéme de générateurs car tout élément de U + W s’écrit u 4+ w avec u € U et
w € W. Puisque u est combinaison linéaire des éléments v; et des u; et que w est combinaison
linéaire des v; et des w;, on voit que u+w €< B >. Il reste & voir qu’il s’agit de vecteurs linéairement

indépendants. Considérons donc une combinaison linéaire nulle

QU1 + . Uk + Brug + o Bt + 1wn + -+ w, = Oy (;k)
ot les o, B;,v € K. On récrit cette équation comme suit :
V=2 0(4\[4.{..... +°((3LV& +/51u'-4+-~--‘|'/'2"mu-w~_1 = ~'X"IWA""" ﬁ&nww

v €U veW
Alnsl , V - U (\\(\/ ) (&omc V z g4v4 4. F S&V% = ‘X4W4‘~-'5,\Wn~
= g,,v4+-.~+ ghvk+xﬂw4+w+gwww: O

O\r, (an e /Vﬁ I Wa,..., WV,B ea\' e \oasz e\c W pov Coth.uc ou .
(}ov\.c_ c,' &’)L (VRV¥ B Q‘KU\NLILL QA’-Iov-e.l
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Exemple 1.5. Considérons dans Fo[r]=* les sous-espaces U = {p(z) | p(0) = 0} et W = Fyl]=*.
: U '?/)\' ?W\Aé M{?OQ‘BV\-GM{b &L l& Q‘F\.\/\/\,ﬁ_ M3+ bXZ‘-P C X

= Lk:(x?’}x ,)4) A.ovn(, ALW\U=3 )

- W ea& Q—owmr, (L.s po nowes du lc. (')‘a\wa o X A—bX+C
=D %w:(-ft‘,x',xz) c&omc O\LW\W:S ) }‘XZ‘X3>
-AL\/\A(U'\-N):B-%B‘Z:L} ~e/\- %U,,WZ( I /

2

'MM(U(\V\I):»? o @UW:(X;X)

2 La linéarité

Nous avons parlé dans ce module de groupes, d’anneaux, de corps et d’espaces vectoriels, mais
nous n’avons pas encore appris a comparer les objets de chacune de ces classes entre eux. Ceci

nous ameéne a la notion d’homomorphisme, du grec opog, semblable, et poppn, forme.

Définition 2.1. Soient (G, *) et (H,o) deux groupes.
Un homomorphisme de groupes est une application f : G — H telle que f(g*¢') = f(g) o f(¢').

Soient A et B deux anneaux. Un homomorphisme d’anneaux est une application f : A — B telle

que fla+a') = fla) (f(d), flag) = f(a%\f(a’) et f(1a) =15

Ainsi, en général, un homomorf)\hisme, ou parfois simplement "morphisme", est une application
qui préserve la structure a disposition. Le premier exemple qui vient & ’esprit est 'inclusion d’un

sous-anneau. Par exemple, I'inclusion @ C R est un homomorphisme d’anneaux (injectif).

Exemple 2.2. Considérons ’application de réduction modulo p qui envoie un entier relatif sur sa
classe de congruence modulo p. Ainsi f : Z — Z/pZ est définie par f(n) = [n].
Il s’agit d’'un homomorphisme d’anneaux (surjectif) par définition de la somme et du produit dans

les entiers modulo p.
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Il est naturel de définir maintenant un homomorphisme d’espaces vectoriels comme étant une
application qui préserve la somme et ’action.

Définition 2.3. Soient K un corps, V et W deux K-espaces vectoriels.
Une application (K-) linéaire est une application av: V- — W telle que, Vv,v' € V et VA € K,

®a(+v) =alv) +a(v);
o a(\v) = Aa(v). ) ANE K.
On note souvent L(V, W) 'ensemble de toutes les applications linéaires de V' vers W.

Lorsque V' = W on abrége en L(V).

On appelle isomorphisme une application linéaire bijective.
En particulier, on voit que a(0y) = Oy, car , SI )\ = OK ) ol (0\/\ = ok (QV> = OK'OL(V) = OW

De nouveau, les exemples évidents qui nous viennent & l’esprit sont les inclusions de sous-espaces
vectoriels, mais nous montrerons que des transformations du plan comme les rotations, symétries,

homothéties et projections orthogonales sont des applications R-linéaires de R? dans lui-méme.

Proposition 2.4. Soit o : V — W une application linéaire, U C V et Z C W des sous-espaces.

Alors a(U) est un sous-espace de W et a='(Z) est un sous-espace de V.

Démonstration. La premiére affirmation se fera en exercice.

Montrons simplement la deuxiéme affirmation a l’aide de notre critére favori.

(X(OV) = OW é 2 ADV\(_ OV € 01 () quu, 'C,Sk rLov\c now V‘lc[L(
.Si V;Vlé d\“(?:) =) D((v) e/\'ol(v)é’z. |
De ps (W)t a(v') € Z b (WVralv)= ) :b"(?.)

ViV € ol
Gioveol(2) et dovs (V) € 2 ot Ynbae
! O{(z\ hek Aa(vV) et eb Aa(v)= 01(“) €2

Exemple 2.5. Considérons les espaces vectoriels C? et C*. -1
idions o e > v ed(2)
Un exemple d’application C-linéaire o : C3 — C* est donné par '

Az, 22, 2) = (24 j T4 LBy LY 2, y o i L2y ) w
C\ﬁ&(,u.wg d,g,; c,ow\po.sa.v»tm (La. Q,tmaat A,ol‘ e,h... e (ow,blvwx,\ov) Q&wc,a.um—

Exemple 2.6. L’application 3 : F2 — F; définie par B(a,b,c) =a+b—3c+1 N est f)a;,

"QLV\%OJLN, Cos /5((0,0-,'0)) = /\7_‘ O
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3 Noyau, image et rang

Etant donné une application linéaire, deux sous-espaces importants nous aident & comprendre

la signification géométrique de cette application. " "
kcx = Kwn = V\Oaw
Définition 3.1. Soit o : V' — W une application linéaire.

Le noyau de a, noté Ker(a), est le sous-espace a~1(0) = {v € V] a(v) = O\LE
L’image de o, notée Im(a), est le sous-espace a(V) = {w e W |3Jv € V tel que a(v) = w}.

Le rang de « est la dimension de Im(«).

Exemple 3.2. Considérons 'application linéaire o : R? — R? définie par a(z;y) = (:17 ; y; J ; x) .

Calculons le noyau et 'image de cette application linéaire du plan.

Ker () "_'?__‘3 =0 &> X:L& = Ker () = <(4 1) >
A=* =0

- X - A
u"%j wtv=0

m(d\ - dovs e couPLeo (w,v) l:o] Hx,‘a oLl - 3;_7( ,
= T (@) = < (45-4) > R 6&.(«)

1 x—_ta
(:m\— A eﬂ« \a prcoa oan ov\o\\k do 11 \ ]

Swr ‘Qot "M*': X=*™ (} '

Proposition 3.3. - -
Une application linéaire est injective si et seulement son noyau est le sous-espace {0}. __? (0()
L

Démonstration. Si «:'V — W est injective, alors le seul vecteur dont 'image est Oy, doit étre Oy,
si bien que Ker(a) = {0}.
Réciproquement, si le noyau est nul, montrons que « est injective.

Se.k Vo, v é\/ {;e, aluq, o((V)@O’\(V)
= &(v-v) 5 20 -4(V)© Ou > V- v € Keels) = 103

A Lewbosee - V-V'= Ov = V=YV = '|v\\a}ﬁ'vt,
[

Le théoreme du rang explique la relation trés forte qui existe entre les dimensions des sous-

espaces vectoriels en jeu, celle du noyau et celle de I'image.
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Théoréme 3.4. du rang.

Soit o -V — W une application linéaire et supposons que V' est de dimension finie. Alors
dim V' = dim(ker ) 4 rang(«)

Démonstration. Puisque V est de dimension finie, le sous-espace Ker(«) aussi. Choisissons une base

(v1,...,v) du noyau et complétons-la en une base de V' tout entier, By = (vy, ..., Uk, U1, ..., Up).

Pour terminer la preuve, il suffit de montrer que 'image de o est un sous-espace de dimension n.
Considérons donc les vecteurs a(uy),. .., a(u,) de espace vectoriel W. Nous allons montrer

qu’ils forment une base de Im(«).

En effet, si w € Im(«), il existe v € V' tel que a(v) = w. Ecrivons ce vecteur v comme combinaison

linéaire des vecteurs de la base By que nous avons construite :

w=a(v) =a(Mvy + -+ MUk + g + - F fpty)

= )\4 oL(v,\) + -t )\_ho{(vh] -|-/0L40L(Lt4) + .. -l//tv\ot (LL.,,)
(o8 'QKV\-UU{'-L = Ow ¢ e + BN
ou les coefficients A; et p; sont dans K. Ainsi, w est bien combinaison linéaire de vecteurs o(u;).

Il reste encore & montrer que ces vecteurs sont linéairement indépendants.

Considérons donc une combinaison linéaire nulle oL Q,‘.v‘{'_w!rt
Ow = ’Yla(ul) + e+ /Yna(un) = O‘(VI“I == oo = Vnun)'

Ainsi, le vecteur yyuq + - - - + y,u, appartient d. KU’ (°(3 :

est ume bose

(_-Dovxt’_ XA(M"" " 6"\ bom = SAV4"‘ Y g%_\lﬂ Cos (V'I.\M Vh) L Ker (A)

= 25/1(444--“-}-6‘“[,\_“— AV’\—"'~g“PZVk- = O\/

C,l' (owwi e (u,,,-..,u.,,)v,‘,_,,,vhB %LW W&LV ) l&&wl:.

COVV\'»J\(\M3OV\ p@&&i\ol} donwne KL =0 Y Q»(" &3:0V§
Atnsi d\(“ﬂ) ) oo ok(un) ub wne Q‘o\m\\& fibee o 6‘&&&:& to & T (01).[]

Corollaire 3.5. Soit V et W des K -espaces vectoriels.

Alors, st dimV < dim W, il n’existe aucune application linéaire surjective a:'V — W.

Corollaire 3.6. Soit V' et W des K-espaces vectoriels et o : V. — W une applicatin linéaire.

Alors, si rang(a) = dim W, « est surjective.



o
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Corollaire 3.7. Soit V et W des K -espaces vectoriels de méme dimension, finie.
Alors une applicatin linéaire o : V. — W est injective si et seulement si elle est surjective si et

seulement si elle est bijective.

Démonstration.

Le théoréme du rang nous dit que « est injective si et seulement si dim Im(a) = dim V.

Puisque dim V' = dim W ceci arrive exactement lorsque « est surjective. O
Exemple 3.8. Soit a : C2 — C une application C-linéaire. Thas A romg ( 0-70 °“b’(0)
Elle est donc de la forme a(z, 2') = az + bz" avec a,b € C. 2 - diw (('7') - duw €+
Lesquelles de ces applications sont surjectives, injectives, bijectives ? damn k"(d)

obe 0, o ek Vagplichon wulle. Kee(a) = € 77 (0;0)]

= o wnel lh\&&‘ﬂ:\fﬁ- VM:_Sur](—oLivb.

Qimon ¢ rongd () > 0 ob remg(d) £ 4 = dim €
A.owt. rawa lel] =4 = ad esk sux|f,o"i\rb. .
'T:; 0 diw (Ker (d\> =4 =5 & wakpe mfecnve.

) :DGM,S x-ous \cs s , ol n'c..)lf owwtuf.\ bl(){&lw‘c

4 La matrice d’une application linéaire

Nous travaillons dans cette section avec deux K-espaces vectoriels V' et W de dimensions finies,
disons m et n respectivement. Nous aimerions mieux comprendre ’espace vectoriel de toutes les
applications linéaires a : V' — W. Combien y en a-t-il?7 Comment les représenter et travailler

avec? A quoi correspondent-elles dans la pratique ?

Définition 4.1. Une matrice n x m a coefficients dans K est un tableau, entouré de parentheéses,

de n lignes et m colonnes dans lequel toutes les entrées sont des scalaires (de K) :

aiy G2 ... Qi Jf' lnL'.a. — n’ Ia' we
A - Q21 Q22 ... Q2m Y\ &anu e Q
=1 . . . . 9 tndice = ¢’ olame.

Ap1 Ap2 ... Apm

On note M, ., (K) 'ensemble de toutes ces matrices. w colonves
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On additionne les matrices de méme taille coefficient par coefficient, si bien que M, ., (K) est
un groupe abélien. On le munit d’une action de K, coefficient par coefficient, qui en fait K-espace

vectoriel.
Proposition 4.2. L’espace vectoriel M, x,(K) est de dimension n - m.

Démonstration. La base canonique de M,y (K) est formée des matrices e;; avec 1 < i < n et
1 < j < m dont tous les coefficients sont nuls, & 'exception de celui de la i ligne, j°™° colonne

qui vaut 1g. ]

Définition 4.3. Soit o : V' — W une application linéaire.
On fixe une base B = (eq,...,e,) de Vet C = (f1,..., fn) de W. (‘Jimv-m o diwW = n
Soient a;; les coefficients dans K des combinaisons linealres, uniques, a(e;) = > a;; fi. “46
1elsTque ; 7t
a1 ... Qim da 3-

Alors la matrice A = (a;;) = | ¢+ . est la matrice de o dans les bases B et C.

Ap1 - .- Apm

Cette définition permet de construire une application T : L(V, W) — M,y (K).

Théoréme 4.4. L’application T : LIV, W) — M, wm(K) est un isomorphisme d’espaces vectoriels.
En particulier, dim L(V, W) =n - m.

Démonstration. Voyons d’abord pourquoi 'application T' est linéaire.

Si v et B sont deux applications linéaires, alors (a+3)(e;) = a(e;)+B(e;), si bien que les coefficients
de la matrice de o + 8 sont la somme de ceux des matrices de « et de f3.

De méme, T'(Aa) = A\T'(«) pour tout A € K.

De plus, 'application linéaire T est injective, car Sl T (0() -&S" [« M&I\ACL vw.“e,

a,\ors (1 8 e&" l &F(QAG-L\M Vl.u.ue. .

Enfin, T est aussi surjective car a toute matrice (a;;)nxm, on peut faire correspondre une application

a € L(V, W) définie comme suit :
= bose de V

VVéV7 V:Z)\ae

cox %Y-.-.(e4 . em) -&bl’ wne

Xh O(CS (—’; -
I base C sowk  Res '
por dilimikion

lea §y=1

d
On pose ok(V) - Z_Zb—\
Amai , Les wmpow\-u de o (v) dowms

'ek-cwwmh do ‘Qc- Vhe\uu. co\onv\e, A (>*m
dun pro btk medatetd o 8Ls\‘ dottment dindaure .
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Ainsi, une fois qu’on s’est fixé une base By de 'espace vectoriel de départ V' et une base By,
de l'espace vectoriel d’arrivée W, la matrice d’'une application se construit en placant dans les

colonnes les composantes des images des vecteurs de la base By relativement & la base Byy.

Réciproquement, pour calculer I'image d’un vecteur v € V par une application linéaire dont

on nous donne seulement la matrice, il faut exprimer le vecteur v comme combinaison linéaire des

vecteurs de la base By = (ey,...,ey), écrire ses composantes dans un vecteur colonne et multiplier
ce vecteur a droite par A pour obtenir les composantes de a(v) relativement & By = (f1,..., fn) :
A1 Do aijh; I
v:Z)\jej = Al | = : =1 : = a(v)zz,ufi
Am > AnjAj fin

1 (ﬂ —ﬁ)

Exemple 4.5. Soit p : R? — R? I'application linéaire donnée par la matrice A = =
P P PP p 9 \/§ \/5
relativement & la base canonique de R2.

Alors I'image du point (1; 1) est donné par

(4:1\[2-\)_2 /1)___0
A- (4 2\ A V2

I'image de e; = (1;0) est
° o 4 A(ﬁ ~2 (4):%(?
A(o) = 2z2Wz vz /(0D >
I'image de e; = (0;1) est

-z
o) - 4
A(/l)"'z.(wf'z

@
Vv

Géométriquement, A est la matrice de P& ro['&kov\ o\‘ Mall— :_". -el- JL cew "M 0 .
Lf



