
IV. Applications linéaires

Le programme pour aujourd’hui est de continuer la discussion sur les bases d’un espace vectoriel,

puis d’étudier les applications entre espaces vectoriels qui préservent la structure à disposition,

c’est-à-dire la somme et l’action.

1 Dimension

Soit K un corps et V un K-espace vectoriel de dimension finie, ce qui signifie que V admet

une base finie. Pour pouvoir définir la notion de dimension, nous devons montrer que le nombre

de vecteurs qu’il faut pour former une base ne varie pas d’une base à l’autre.

Proposition 1.1. Soit V un K-espace vectoriel de dimension finie.
Si B et B→ sont deux bases de V , alors |B| = |B→|.

Démonstration. On a vu la semaine passée que le nombre d’éléments d’une partie libre de V est

toujours inférieur ou égal au nombre d’éléments d’un système de générateurs.

La définition suivante a donc un sens.

Définition 1.2. Soit V un K-espace vectoriel.

La dimension de V sur K, notée dimK(V ) ou simplement dimV , est le nombre d’éléments que

contient une base de V .

Si V n’est pas de dimension finie, on dit que la dimension de V est infinie et alors, par définition,

aucune de ses bases n’est finie.
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Exemple 1.3.
Les espaces vectoriels F(R,R) ou celui des suites de nombres complexes sont de dimension infinie.

Par contre, dimRn = n car la base canonique contient exactement n vecteurs et l’espace vectoriel

F23[x]↑n
des polynômes de degré → n à coe!cients dans le corps à 23 éléments est de dimension

Clairement, si U est un sous-espace de V , dimU → dimV , puisqu’on peut compléter une base

de U en une base de V . Ainsi, la dimension d’une somme de sous-espaces est plus grande ou égale

à la dimension de chacun d’eux. Mais comment calcule-t-on explicitement cette dimension ?

Proposition 1.4. Soient V un K-espace vectoriel et U,W ↑ V deux sous-espaces de V . Alors

dim(U +W ) = dimU + dimW ↓ dim(U ↔W )

Démonstration. Nous devons comparer les tailles des bases des sous-espaces en jeu.

Pour faire cela, commençons par choisir une base (v1, . . . , vk) de l’intersection U ↔W .

C’est une famille libre de U que nous pouvons compléter en une base (v1, . . . , vk, u1, . . . , um) de U .

De même on construit une base (v1, . . . , vk, w1, . . . , wn) de W .

Il s’agit d’un système de générateurs car tout élément de U +W s’écrit u + w avec u ↗ U et

w ↗ W . Puisque u est combinaison linéaire des éléments vi et des uj et que w est combinaison

linéaire des vi et des wl, on voit que u+w ↗< B >. Il reste à voir qu’il s’agit de vecteurs linéairement

indépendants. Considérons donc une combinaison linéaire nulle

ω1v1 + . . .+ ωkvk + ε1u1 + . . .+ εmum + ϑ1w1 + . . .+ ϑnwn = 0V

où les ωi, εj, ϑl ↗ K. On récrit cette équation comme suit :
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Exemple 1.5. Considérons dans F2[x]↑3
les sous-espaces U = {p(x) | p(0) = 0} et W = F2[x]↑2

.

2 La linéarité

Nous avons parlé dans ce module de groupes, d’anneaux, de corps et d’espaces vectoriels, mais

nous n’avons pas encore appris à comparer les objets de chacune de ces classes entre eux. Ceci

nous amène à la notion d’homomorphisme, du grec oµoϖ, semblable, et µoϱςφ, forme.

Définition 2.1. Soient (G, ↘) et (H, ≃) deux groupes.

Un homomorphisme de groupes est une application f : G ⇐ H telle que f(g ↘ g→) = f(g) ≃ f(g→).
Soient A et B deux anneaux. Un homomorphisme d’anneaux est une application f : A ⇐ B telle

que f(a+ a
→) = f(a) + f(a→), f(aa→) = f(a)f(a→) et f(1A) = 1B.

Ainsi, en général, un homomorphisme, ou parfois simplement "morphisme", est une application

qui préserve la structure à disposition. Le premier exemple qui vient à l’esprit est l’inclusion d’un

sous-anneau. Par exemple, l’inclusion Q ↑ R est un homomorphisme d’anneaux (injectif).

Exemple 2.2. Considérons l’application de réduction modulo p qui envoie un entier relatif sur sa

classe de congruence modulo p. Ainsi f : Z ⇐ Z/pZ est définie par f(n) = [n].

Il s’agit d’un homomorphisme d’anneaux (surjectif) par définition de la somme et du produit dans

les entiers modulo p.
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Il est naturel de définir maintenant un homomorphisme d’espaces vectoriels comme étant une

application qui préserve la somme et l’action.

Définition 2.3. Soient K un corps, V et W deux K-espaces vectoriels.

Une application (K-) linéaire est une application ω : V ⇐ W telle que, ⇒v, v→ ↗ V et ⇒↼ ↗ K,

• ω(v + v
→) = ω(v) + ω(v→) ;

• ω(↼v) = ↼ω(v).

On note souvent L(V,W ) l’ensemble de toutes les applications linéaires de V vers W .

Lorsque V = W on abrège en L(V ).

On appelle isomorphisme une application linéaire bijective.

En particulier, on voit que ω(0V ) = 0W , car

De nouveau, les exemples évidents qui nous viennent à l’esprit sont les inclusions de sous-espaces

vectoriels, mais nous montrerons que des transformations du plan comme les rotations, symétries,

homothéties et projections orthogonales sont des applications R-linéaires de R2
dans lui-même.

Proposition 2.4. Soit ω : V ⇐ W une application linéaire, U ↑ V et Z ↑ W des sous-espaces.
Alors ω(U) est un sous-espace de W et ω↓1(Z) est un sous-espace de V .

Démonstration. La première a!rmation se fera en exercice.

Montrons simplement la deuxième a!rmation à l’aide de notre critère favori.

Exemple 2.5. Considérons les espaces vectoriels C3
et C4

.

Un exemple d’application C-linéaire ω : C3 ⇐ C4
est donné par

ω(z1, z2, z3) =

Exemple 2.6. L’application ε : F3
7 ⇐ F7 définie par ε(a, b, c) = a+ b↓ 3c+ 1 est
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3 Noyau, image et rang

Etant donné une application linéaire, deux sous-espaces importants nous aident à comprendre

la signification géométrique de cette application.

Définition 3.1. Soit ω : V ⇐ W une application linéaire.

Le noyau de ω, noté Ker(ω), est le sous-espace ω
↓1(0) = {v ↗ V |ω(v) = 0}.

L’image de ω, notée Im(ω), est le sous-espace ω(V ) = {w ↗ W | ⇑v ↗ V tel que ω(v) = w}.
Le rang de ω est la dimension de Im(ω).

Exemple 3.2. Considérons l’application linéaire ω : R2 ⇐ R2
définie par ω(x; y) =

(
x↓ y

2
;
y ↓ x

2

)
.

Calculons le noyau et l’image de cette application linéaire du plan.

Proposition 3.3.
Une application linéaire est injective si et seulement son noyau est le sous-espace {0}.

Démonstration. Si ω : V ⇐ W est injective, alors le seul vecteur dont l’image est 0W doit être 0V ,

si bien que Ker(ω) = {0}.
Réciproquement, si le noyau est nul, montrons que ω est injective.

Le théorème du rang explique la relation très forte qui existe entre les dimensions des sous-

espaces vectoriels en jeu, celle du noyau et celle de l’image.
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Théorème 3.4. du rang.
Soit ω : V ⇐ W une application linéaire et supposons que V est de dimension finie. Alors

dimV = dim(kerω) + rang(ω)

Démonstration. Puisque V est de dimension finie, le sous-espace Ker(ω) aussi. Choisissons une base

(v1, . . . , vk) du noyau et complétons-la en une base de V tout entier, BV = (v1, . . . , vk, u1, . . . , un).

Pour terminer la preuve, il su!t de montrer que l’image de ω est un sous-espace de dimension n.

Considérons donc les vecteurs ω(u1), . . . ,ω(un) de l’espace vectoriel W . Nous allons montrer

qu’ils forment une base de Im(ω).

En e"et, si w ↗ Im(ω), il existe v ↗ V tel que ω(v) = w. Ecrivons ce vecteur v comme combinaison

linéaire des vecteurs de la base BV que nous avons construite :

w = ω(v) = ω(↼1v1 + · · ·+ ↼kvk + µ1u1 + · · ·+ µnun)

=

où les coe!cients ↼i et µj sont dans K. Ainsi, w est bien combinaison linéaire de vecteurs ω(uj).

Il reste encore à montrer que ces vecteurs sont linéairement indépendants.

Considérons donc une combinaison linéaire nulle

0W = ϑ1ω(u1) + · · ·+ ϑnω(un) = ω(ϑ1u1 + · · ·+ ϑnun).

Ainsi, le vecteur ϑ1u1 + · · ·+ ϑnun appartient

Corollaire 3.5. Soit V et W des K-espaces vectoriels.
Alors, si dimV < dimW , il n’existe aucune application linéaire surjective ω : V ⇐ W .

Corollaire 3.6. Soit V et W des K-espaces vectoriels et ω : V ⇐ W une applicatin linéaire.
Alors, si rang(ω) = dimW , ω est surjective.
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Corollaire 3.7. Soit V et W des K-espaces vectoriels de même dimension, finie.
Alors une applicatin linéaire ω : V → W est injective si et seulement si elle est surjective si et
seulement si elle est bijective.

Démonstration.
Le théorème du rang nous dit que ω est injective si et seulement si dim Im(ω) = dimV .

Puisque dimV = dimW ceci arrive exactement lorsque ω est surjective.

Exemple 3.8. Soit ω : C2 → C une application C-linéaire.

Elle est donc de la forme ω(z, z→) = az + bz
→
avec a, b ↑ C.

Lesquelles de ces applications sont surjectives, injectives, bijectives ?

4 La matrice d’une application linéaire

Nous travaillons dans cette section avec deux K-espaces vectoriels V et W de dimensions finies,

disons m et n respectivement. Nous aimerions mieux comprendre l’espace vectoriel de toutes les

applications linéaires ω : V → W . Combien y en a-t-il ? Comment les représenter et travailler

avec ? A quoi correspondent-elles dans la pratique ?

Définition 4.1. Une matrice n↓m à coe!cients dans K est un tableau, entouré de parenthèses,

de n lignes et m colonnes dans lequel toutes les entrées sont des scalaires (de K) :

A =





a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm





On note Mn↑m(K) l’ensemble de toutes ces matrices.
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On additionne les matrices de même taille coe!cient par coe!cient, si bien que Mn↑m(K) est

un groupe abélien. On le munit d’une action de K, coe!cient par coe!cient, qui en fait K-espace

vectoriel.

Proposition 4.2. L’espace vectoriel Mn↑m(K) est de dimension n ·m.

Démonstration. La base canonique de Mn↑m(K) est formée des matrices eij avec 1 ↔ i ↔ n et

1 ↔ j ↔ m dont tous les coe!cients sont nuls, à l’exception de celui de la i
ème

ligne, j
ème

colonne

qui vaut 1K .

Définition 4.3. Soit ω : V → W une application linéaire.

On fixe une base B = (e1, . . . , em) de V et C = (f1, . . . , fn) de W .

Soient aij les coe!cients dans K des combinaisons linéaires, uniques, ω(ej) =
∑

aijfi.

Alors la matrice A = (aij) =




a11 . . . a1m
...

. . .
...

an1 . . . anm



 est la matrice de ω dans les bases B et C.

Cette définition permet de construire une application T : L(V,W ) → Mn↑m(K).

Théorème 4.4. L’application T : L(V,W ) → Mn↑m(K) est un isomorphisme d’espaces vectoriels.
En particulier, dimL(V,W ) = n ·m.

Démonstration. Voyons d’abord pourquoi l’application T est linéaire.

Si ω et ε sont deux applications linéaires, alors (ω+ε)(ei) = ω(ei)+ε(ei), si bien que les coe!cients

de la matrice de ω + ε sont la somme de ceux des matrices de ω et de ε.

De même, T (ϑω) = ϑT (ω) pour tout ϑ ↑ K.

De plus, l’application linéaire T est injective, car

Enfin, T est aussi surjective car à toute matrice (aij)n↑m, on peut faire correspondre une application

ω ↑ L(V,W ) définie comme suit :
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Ainsi, une fois qu’on s’est fixé une base BV de l’espace vectoriel de départ V et une base BW

de l’espace vectoriel d’arrivée W , la matrice d’une application se construit en plaçant dans les

colonnes les composantes des images des vecteurs de la base BV relativement à la base BW .

Réciproquement, pour calculer l’image d’un vecteur v ↑ V par une application linéaire dont

on nous donne seulement la matrice, il faut exprimer le vecteur v comme combinaison linéaire des

vecteurs de la base BV = (e1, . . . , em), écrire ses composantes dans un vecteur colonne et multiplier

ce vecteur à droite par A pour obtenir les composantes de ω(v) relativement à BW = (f1, . . . , fn) :

v =
∑

ϑjej ↗ A




ϑ1
...

ϑm



 =





∑
a1jϑj
...

∑
anjϑj



 =




µ

...

µn



 ↗ ω(v) =
∑

µfi

Exemple 4.5. Soit ϖ : R2 → R2
l’application linéaire donnée par la matrice A =

1

2

(↘
2 ≃

↘
2↘

2
↘
2

)

relativement à la base canonique de R2
.

Alors l’image du point (1; 1) est donné par

l’image de e1 = (1; 0) est

l’image de e2 = (0; 1) est

Géométriquement, A est la matrice de
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