
Cours Turing
Semaine 12

Note : Le paragraphe qui suit est certes un peu mathématique, mais c’est aussi un ingrédient
essentiel à ce qui va suivre dans le cours, notamment pour une bonne partie de ce qui concerne
la cryptographie à clé publique.

1 Faisons tout d’abord un peu d’arithmétique modulaire. . .

Définition :
Etant donné deux nombres entiers positifs A,N , A (mod N) (prononcer “A modulo N”) est le
reste de la division de A par N ; A (mod N) est donc un nombre compris entre 0 et N − 1.

Exemple : 64 (mod 11) = 9, car 64 = 5 · 11 + 9 (donc le reste de la division vaut 9).

A noter qu’en Python, A (mod N) s’écrit simplement A%N .

Addition modulaire

Pour effectuer une addition modulo N , on effectue d’abord une addition classique, puis on
calcule le reste de la division par N du résultat.

Exemple : (64 + 17) (mod 11) = 81 (mod 11) = 4.

Ceci dit, pour effectuer une addition modulaire, on peut aussi utiliser la propriété suivante, qui
consiste à “prendre les modulos” avant d’effectuer l’addition :

(A+B) (mod N) = (A (mod N) +B (mod N)) (mod N)

ce qui permet de légèrement simplifier le calcul de l’exemple précédent :

(64 + 17) (mod 11) = (64 (mod 11) + 17 (mod 11)) (mod 11) = (9 + 6) (mod 11)

= 15 (mod 11) = 4

On voit en effet que seule une addition de deux chiffres (9 et 6) est requise ici (plus besoin
d’effectuer l’addition de 64 et 17). Ceci ne semble pas constituer un si grand avantage, car les
calculs intermédiaires des modulos sont à effectuer en plus, mais cet avantage prend tout son
sens lorsqu’on parle de multiplication. . .

1



Multiplication modulaire

De la même manière que pour l’addition, on effectue d’abord une multiplication classique, puis
on prend le modulo.

Exemple : (64 · 17) (mod 11) = 1088 (mod 11) = 10.

Ceci dit, il est aussi possible de prendre les modulos avant d’effectuer la multiplication, grâce
à la propriété suivante :

(A ·B) (mod N) = (A (mod N) ·B (mod N)) (mod N)

ce qui permet de considérablement simplifier le calcul de l’exemple ci-dessus :

(64 · 17) (mod 11) = (64 (mod 11) · 17 (mod 11)) (mod 11) = (9 · 6) (mod 11)

= 54 (mod 11) = 10

Au lieu d’effectuer la multiplication 64 · 17 = 1088, on ne doit calculer que 9 · 6 = 54, qui fait
partie de la table des livrets appris par cœur à l’école primaire.

En résumé, effectuer des opérations en arithmétique modulaire est très pratique, car cela per-
met de ne jamais faire de calculs impliquant des nombres plus grands que N .

Tables d’addition et de multiplication

Considérons N = 5 et dressons les tableaux de l’addition et de la multiplication modulo 5 :

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Il est remarquable que dans le tableau de l’addition, chaque ligne et chaque colonne contient
exactement l’ensemble des chiffres de 0 à 4. Il en va de même dans le tableau de la multiplication :
si on ignore la ligne et la colonne de zéros, chaque ligne et chaque colonne contient exactement
l’ensemble des chiffres de 1 à 4.

Voyons maintenant ce qui se passe pour N = 4 :

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

On voit que si d’une part la propriété précédente reste vraie pour le tableau de l’addition, il
n’en va plus de même pour le tableau de la multiplication : la ligne et la colonne correspondant
au chiffre 2 ne contiennent ni le chiffre 1, ni le chiffre 3, et contiennent même un 0 en leur
intersection. Ceci est dû au fait que 4 n’est pas un nombre premier (tandis que 5 est premier).

2



Soustraction et division modulaires
(Note : Le présent paragraphe peut être laissé de côté en première lecture.)

Comment effectuer les opérations inverses de l’addition et de la multiplication, à savoir la
soustraction et la division ? La réponse est simple, une fois qu’on a dressé les tables ci-dessus.

Commençons par la soustraction : calculer (A−B) (mod N) revient à chercher le nombre C tel
que (B + C) (mod N) = A. Pour calculer (1 − 4) (mod 5), par exemple, on cherche le nombre
C tel que (4 + C) (mod 5) = 1. Ceci se fait en parcourant la première table d’addition établie
ci-dessus : dans la ligne 4, on cherche le chiffre 1, et on identifie la colonne de celui-ci, en
l’occurence, la colonne 2. Donc (1− 4) (mod 5) = 2. Une démarche similaire permet d’effectuer
une soustraction modulo 4, ou plus généralement modulo N pour toute valeur de N .

Pour la division, le procédé est encore une fois similaire (si on oublie le nombre 0) : pour
calculer (A/B) (mod N), on cherche le nombre C tel que (B · C) (mod N) = A. Par exemple
(1/4) (mod 5) est le nombre C tel que (4 · C) (mod 5) = 1. En parcourant la table de multi-
plication modulo 5, on cherche donc à la ligne 4 la colonne dans laquelle se trouve le chiffre 1,
en l’occurence, la colonne 4. Donc (1/4) (mod 5) = 4. Lorsqu’on voit ça pour la première fois,
il faut bien reconnaître que c’est un peu surprenant, car classiquement, on aurait envie de dire
que 1/4 = 0, 25. Mais en arithmétique modulaire, le résultat d’une opération doit toujours être
un nombre entier compris entre 0 et N − 1, même si c’est un peu contre-intuitif. . .

Et vous aurez aussi sans doute déjà remarqué qu’une division modulo 4 peut poser problème.
Par exemple, que peut valoir (3/2) (mod 4) ? Le nombre 3 n’apparaît pas dans la ligne 2 de la
table de multiplication modulo 4. La réponse est qu’il n’est tout simplement pas possible de
définir correctement la division modulo N si N n’est pas un nombre premier.

Applications

A ce stade, vous êtes en droit de vous poser une question : mais à quoi peut donc bien servir
cette arithmétique modulaire ? Voici plusieurs réponses qui nous intéressent (mais il en existe
beaucoup d’autres, bien sûr).

1. Contrairement aux opérations d’addition et de multiplication classiques, les opérations
modulaires, lorsque répétées plusieurs fois, ont des comportements peu prévisibles (on
parle même de “comportement chaotique”) : c’est pour cela qu’elles peuvent se révéler
utiles pour générer des nombres aléatoires. Nous verrons cela en détail dans la prochaine
section.

2. Curieusement peut-être, l’arithmétique modulaire est aussi très utile pour trouver de
(très) grands nombres premiers.

3. Il existe une opération modulaire dite “à sens unique”, c’est-à-dire, une opération facile
à faire, mais très difficile à inverser.

4. Ces deux derniers points sont des éléments essentiels de la cryptographie dite “à clé
publique”, que nous verrons ensemble dans les prochaines semaines.

3



2 Générateurs de nombres aléatoires : une introduction

La semaine dernière, nous avons vu le système de clé à usage unique et comment sa sécu-
rité repose sur la génération d’une clé K aléatoire. Il existe un grand nombre d’applications
en informatique, et plus particulièrement en cryptographie, qui reposent sur la génération de
nombres aléatoires. Mais comment générer des nombres aléatoires à partir d’un ordinateur, qui
est fondamentalement une machine déterministe ?

Pour simuler le hasard, une première idée est d’utiliser, par exemple, le nombre de millisecondes
écoulées depuis le début d’une journée au moment où on veut tirer un nombre au hasard ; ainsi,
si le temps indiqué par l’horloge de l’ordinateur indique 9 heures, 13 minutes, 45 secondes et 174
millisecondes, alors ce nombre vaut 33225174. Ceci fournit un grand nombre qu’on peut consi-
dérer comme plus ou moins aléatoire (en considérant au besoin seulement les 5 derniers chiffres
de ce nombre, ici 25174, pour laisser de côté les premiers chiffres qui seront toujours identiques
si on tire plusieurs nombres de suite). Mais comment choisir ensuite d’autres nombres entiers
aléatoires ? Si on consulte l’horloge de l’ordinateur à intervalles réguliers pour trouver d’autres
nombres, forcément qu’un motif répétitif fera irruption dans la séquence et endommagera la
côté aléatoire de celle-ci.

On peut cependant retenir le premier nombre ainsi trouvé comme graine (ou seed en anglais) à
fournir à un algorithme qui, à partir de là, génèrera une séquence de nombres qu’on espère “les
plus aléatoires possible”. Encore une fois, vu que les ordinateurs sont des machines déterministes,
l’algorithme, quel qu’il soit, ne pourra pas fournir de vrais nombres aléatoires : on parle donc de
générateurs pseudo-aléatoires. Dans les prochaines sections, nous considérons deux exemples.

2.1 La méthode des carrés tronqués (Von Neumann, vers 1950)

Une première idée pour générer des séquences de (grands) nombres aléatoires est la suivante.
A partir d’un nombre à 8 chiffres, par exemple X = 30472901, calculons son carré :

X2 = (0)928597695355801

et ne retenons que les 8 chiffres du milieu de celui-ci (en rouge) pour le prochain nombre, et
ainsi de suite. . . Cette idée, pour ingénieuse qu’elle soit, génère cependant une séquence de
nombres qui est loin d’être aléatoire : au bout d’un moment, la séquence ainsi produite tombe
sur un nombre qui se répète (comme par exemple X = 60 → X2 = 3600) ou effectue une boucle
à travers quelques valeurs seulement (comme par exemple X = 57 → X2 = 3249 → (0)576).

Note : Ceci n’enlève rien pour autant au génie de John Von Neumann, brillant mathématicien
et physicien, qui fut un non seulement un des pères de l’informatique moderne avec Alan
Turing, mais aussi une des premières personnes à envisager d’utiliser le hasard pour résoudre des
problèmes complexes, d’où sa contribution à la recherche de générateurs de nombres aléatoires.

4



2.2 Les générateurs “à congruence linéaire” de Lehmer (vers 1950)

Cette deuxième idée fait appel à l’arithmétique modulaire : soit N un nombre entier positif et
A,X0 deux nombres compris chacun entre 2 et N − 1. A partir de ces nombres, on génère la
suite de nombres suivante :

X1 = (A ·X0) (mod N), X2 = (A ·X1) (mod N), X3 = (A ·X2) (mod N), . . .

définition qu’on peut réécrire de manière plus compacte :

Xn+1 = (A ·Xn) (mod N), pour n ≥ 0

La question est maintenant de savoir si la suite de nombres X0, X1, X2, X3, . . . ainsi générée
imite bien les propriétés d’une suite aléatoire, ou pas. Voyons tout d’abord quelques exemples.

Note : Vu que tous les nombres générés seront des nombres compris entre 0 et N −1, il est clair
qu’en pratique, on aura envie de choisir N (très) grand. Mais pour comprendre un peu mieux
ce qui se passe, on choisira ici des nombres N plutôt petits.

Commençons donc avec N = 5, A = 4 et X0 = 2. Ceci donne lieu à la séquence suivante :

X0 = 2, X1 = (4 · 2) (mod 5) = 3, X2 = (4 · 3) (mod 5) = 2,

X3 = (4 · 2) (mod 5) = 3, X4 = (4 · 3) (mod 5) = 2, . . .

donc une alternance de 2 et de 3 : pas vraiment une séquence aléatoire !

En choisissant A = 3, on trouve par contre :

X0 = 2, X1 = (3 · 2) (mod 5) = 1, X2 = (3 · 1) (mod 5) = 3,

X3 = (3 · 3) (mod 5) = 4, X4 = (3 · 4) (mod 5) = 2, . . .

Bien sûr, comme N est petit ici, on n’obtient pas vraiment une séquence aléatoire non plus,
mais au moins une séquence qui passe par toutes les valeurs comprises entre 1 et 4 avant de
revenir au point de départ : c’est déjà beaucoup mieux !

Essayons encore avec des nombres plus grands : N = 101, A = 7 et X0 = 7. Dans ce cas, la
séquence des nombres ainsi générée explore aussi toutes les valeurs possibles comprises entre 1
et 100 avant de revenir au point de départ, comme le montre le graphique suivant :

et les nombres semblent en effet explorés dans un ordre relativement aléatoire.

5



Le défaut principal de cette méthode

En reprenant l’exemple de la page précécente avec N = 101, A = 7 et X0 = 7, représentons
maintenant la succession de ces mêmes nombres sur un graphe en deux dimensions, où chaque
point du graphe a pour coordonnées (x, y), avec x, y des nombres compris entre 0 et 1 tels que

x =
Xn

N
et y =

Xn+1

N
=

(A ·Xn) (mod N)

N

pour une certaine valeur de n. Voici à quoi ressemble ce graphe :

On voit apparaître ici une régularité qui n’est pas vraiment désirable lorsqu’on veut générer
des séquences de nombres aléatoires.

Ceci dit, si maintenant N = 231 − 1 = 2147483647, A = 7 et X0 = 7, cette méthode de
génération de nombres aléatoires reste assez efficace !

6


