
Corrigé série 15 Euler 3ème année

Corrigé série 15

Exercice 1 (10 points)

a) Oui

b) Non, comme la multiplication scalaire “sort” de V . Par exemple, 1 ∈ V et 2 ∈ K, mais

2 · 1 = 2 ̸∈ V.

c) Oui

d) Oui

e) Oui

f) Non. Si f, g ∈ V , alors (f + g)′(0) = f ′(0) + g′(0) = 2.

g) Oui

Exercice 2 (5 points)
On définit l’addition, pour ai, bi ∈ Vi avec i = 1, . . . , n, par

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn)

et la multiplication, pour λ ∈ K, par

λ · (a1, . . . , an) := (λa1, . . . , λan).

Dans le cas V1 = V2 = V3 = F2, on peut voir le produit V1 × V2 × V3 comme les sommets d’un
cube de dimension 3.

Exercice 3 (10 points)

a) Oui. La fonction nulle est dérivable, la somme de deux fonctions dérivables est une fonction
dérivable, et si f est dérivable, alors λ · f est dérivable pour tout λ ∈ R.

b) Non. Si f, g ∈ W , alors (f + g)(π) = 2e ̸= e.

c) Oui. La fonction nulle est bornée, la somme de deux fonctions bornées est une fonction bornée,
et la multiplication par un scalaire d’une fonction bornée est une fonction bornée.
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d) Oui. Le triple (0; 0; 0) satisfait la condition. Si x + 2y + ez = 0 et x′ + 2y′ + ez′ = 0 pour
x, y, z, x′, y′, z′ ∈ R, alors

(x+ x′) + 2(y + y′) + e(z + z′) = (x+ 2y + ez) + (x′ + 2y′ + ez′)

= 0 + 0 = 0,

et, pour tout λ ∈ R,
λx+ 2λy + eλz = λ(x+ 2y + ez) = λ0 = 0.

e) Non. Considérons (1, 1, 0) et (0, 0, 1) qui sont deux éléments de l’ensemble W . Cependant, leur
somme (1, 1, 1) ne l’est pas.

Exercice 4 (5 points)
On a, pour r, a, b ∈ R,

r · (a+ bi) = (ra) + (rb)i.

Comme R est non-vide stable par multiplication réelle et par addition, c’est un sous-R-espace
vectoriel de C. On peut choisir (1, i) comme R-base de C.

Exercice 5 (10 points)

a) Faux. Le R-espace vectoriel F(R,R) n’est pas de dimension finie. En effet, on peut exhiber
facilement un ensemble infini {fn ∈ F(R,R) | n ∈ N} de vecteurs linéairement indépendants
en définissant pour tout x ∈ R

fn(x) =

1 si x = n,

0 sinon.

b) Faux. On remarque que {0} ⊆ R est un R-espace vectoriel. Le “cube” étudié dans l’exercice
est un autre contre-exemple.

c) Vrai. Si x1, . . . , xm génère V , alors on peut retirer des vecteurs de la liste

x1, . . . , xm

tant que la liste est linéairement dépendante, sans changer l’espace qu’elle engendre. À la fin,
on obtient une liste linéairement indépendante.

d) Faux. Poser x = 1 et y = 0. Alors, dans R vu comme R-espace vectoriel, x et y sont linéairement
dépendants, mais x n’est pas un multiple de y.

e) Faux. Poser x = y = z. Alors x, y, z sont linéairement dépendants, mais ils n’engendrent qu’une
ligne.
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Exercice 6 (10 points)

a) On rappelle qu’un polynôme f(X) ∈ R[X] de degré n > 0 possède au plus n racines 1.

S’il existe des coefficients λ0, λ1, . . . , λn ∈ R tels que

λ0 + λ1 cos(x) + · · ·+ λn cos
n(x) = 0, pour tout x ∈ R,

alors le polynôme
λ0 + λ1X + · · ·+ λnX

n

possède une infinité de racines : poser X := cos(x) conduit à une solution pour tout x ∈ R. Or,
nous savons qu’un polynôme de degré m ∈ N>0 ne peut pas avoir plus de m racines, ainsi de
tels coefficients λi ne peuvent pas exister, en dehors des coefficients triviaux

λi = 0 pour tout i = 0, . . . , n.

b) Par induction : supposons que pour tout λ0, . . . , λn ∈ R on ait l’implication

λ0 + λ1 cos(x) + · · ·+ λn cos(nx) = 0, pour tout x ∈ R

=⇒ λi = 0 pour tout i = 0, . . . , n.

Pour faire le pas d’induction, supposons qu’il existe des coefficients λ0, . . . , λn+1 ∈ R tels que

λ0 + λ1 cos(x) + λ2 cos(2x) + · · ·+ λn cos(nx) + λn+1 cos((n+ 1)x) = 0, (1)

pour tout x ∈ R. En dérivant deux fois cette équation, on obtient

−λ1 cos(x)− 4λ2 cos(2x)− · · · − n2λn cos(nx)− (n+ 1)2λn+1 cos((n+ 1)x) = 0, (2)

pour tout x ∈ R. On combine maintenant ces deux équations membre à membre de la manière
suivante

(n+ 1)2 · (1) + (2)

pour avoir

(n+ 1)2λ0 + λ1(−1 + (n+ 1)2) cos(x) + λ2(−4 + (n+ 1)2) cos(2x)

+ · · ·+ λn(−n2 + (n+ 1)2) cos(nx) = 0,

1. C’est une conséquence du fait que si f(X) ∈ R[X] a pour racine α, alors f(X) est divisible par (X−α). Ainsi,
on peut écrire

f(X) = (X − α) · g(X),

où g(X) est un polynôme de degré n− 1 ; et on remarque que si f(X) a N racines, alors g(X) aura au moins N − 1

racines. Par induction, on peut supposer que g(X) a au plus n − 1 racines (comme il est de degré n − 1), ce qui
nous permet de conclure.
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pour tout x ∈ R. Par l’hypothèse d’induction, cette dernière équation implique

(n+ 1)2λ0 = 0,

λ1(−1 + (n+ 1)2) = 0,

λ2(−4 + (n+ 1)2) = 0,

...
...

λn(−n2 + (n+ 1)2) = 0,

donc λi = 0 pour i = 0, . . . , n. En revenant à l’équation initiale (1), on voit maintenant que
λn+1 = 0, ce qui établit l’induction.

Exercice 7 (10 points)

a) Les trois vérifications peuvent se faire par calculs directs. On le fait ici pour V : soient
u, v, u′, v′, λ ∈ F7, alors(

u v

0 u

)
+

(
u′ v′

0 u′

)
=

(
u+ u′ v + v′

0 u+ u′

)
∈ V, et

λ ·

(
u v

0 u

)
=

(
λu λv

0 λu

)
∈ V.

b) Pour U , on propose ((
1 0

0 0

)
,

(
0 0

0 1

))
;

pour V , on propose ((
1 0

0 1

)
,

(
0 1

0 0

))
;

et, pour W , on propose ((
1 0

0 1

)
,

(
0 0

1 0

))
.

c) Les trois sous-espaces U ∩ V , U ∩W et V ∩W sont égaux et on peut les écrire comme{(
u 0

0 u

)∣∣∣∣∣u ∈ F7

}
,

ayant donc pour base ((
1 0

0 1

))
.
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Exercice 8 (5 points)
On va montrer que U + U = U . L’inclusion U ⊆ U + U est immédiate, et l’inclusion U + U ⊆ U

est une conséquence du fait que U est stable par addition.

Exercice 9 (5 points)
On propose la liste

((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1)) .

Il est clair que ces trois vecteurs sont Q-linéairement indépendants. Pour voir qu’ils engendrent le
sous-espace de Q5 considéré, choisissons

v = (x1, x2, x3, x4, x5) ∈ Q5

tel que
x1 = 3x2, et x3 = 7x4.

Alors, ces deux conditions nous permettent de réécrire v comme

v = (3x2, x2, 7x4, x4, x5)

= x2(3, 1, 0, 0, 0) + x4(0, 0, 7, 1, 0) + x5(0, 0, 0, 0, 1).

Exercice 10 (5 points)

a) On pose nv := (n · 1K)v, où la multiplication · est définie dans la donnée.

b) On a

n(λv) = (n · 1K)(λv) = ((n · 1K)λ)v
= ((1K + . . . 1K)λ)v = (λ+ . . .+ λ)v = (nλ)v.

c) On a

n(λv) = (n · 1K)(λv) = ((n · 1K)λ)v
= (λ(n · 1K))v = λ((n · 1K)v) = λ(nv).

d) Pour tout vecteur v ̸= 0V et λ ∈ K, on a que λv = 0V si et seulement si λ = 0. En effet, en
raisonnant pas l’absurde, si λ ̸= 0 alors il existe un inverse λ−1 et on a

v = 1Kv = λ−1λv = λ−10V = 0V .

Ainsi, nv = 0V si et seulement si n · 1K = 0. Or, n · 1K = 0 si et seulement si n est divisible par
la caractéristique du corps K.
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Exercice 11 (10 points)

a) ⇒
Supposons que U ∩W = {0}. Soit u+w = u′ +w′ ∈ U +W avec u, u′ ∈ U et w,w′ ∈ W . Alors

U ∋ u− u′ = w′ − w ∈ W,

et donc, u− u′ = w′ − w ∈ U ∩W = {0}. Ainsi, on a

u− u′ = 0 et w′ − w = 0,

ce qui montre l’unicité de l’écriture.

⇐
Soit x ∈ U ∩W . Alors x = u+0 avec u ∈ U et 0 ∈ W ou alors x = 0+w avec 0 ∈ U et w ∈ W .

L’unicité de la décomposition de x implique alors que u = 0 et w = 0.

Ainsi, x = 0 + 0 = 0. Donc U ∩W = {0} et U +W est une somme directe.

On peut également procéder par contraposition :

Si U +W n’est pas une somme directe, alors ∃v ̸= 0 dans U ∩W .

La décomposition de v comme somme d’un élément de U et d’un élément de V n’est pas unique
car v = v + 0 avec v ∈ U et 0 ∈ W ou alors avec 0 ∈ U et v ∈ W .

b) L’égalité U1 + U2 + U3 = V est immédiate, comme U1 + U2 = V et U3 ⊆ V .
Il est aussi immédiat que
— U1 ∩ U2 = 0, car pour u ∈ U1, z = 0 et pour u ∈ U2, x = y = 0

— U1 ∩ U3 = 0, car pour u ∈ U1, z = 0 et pour u ∈ U3, x = 0

— U1 ∩ U3 = 0 et U2 ∩ U3 = 0.

c) On considère dans V = R3 les sous-espaces
U1 = {(x, y, 0) |x, y ∈ R},
U2 = {(0, 0, z) | z ∈ R},
U3 = {(0, y, y) | y ∈ R}.
On a bien V = U1 + U2 + U3 et et Ui ∩ Uj = {(0, 0, 0)} si i ̸= j.

d) Non, par exemple 0 s’écrit comme

0 = (0, 1, 0) + (0, 0, 1) + (0,−1,−1).
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Exercice 12 (10 points)

a) Supposons que V = U1 ⊕ U2 ⊕ U3. Clairement Ui ∩ Uj = {0} si i ̸= j, car sinon l’écriture de 0

ne serait pas unique : par exemple si x ∈ U1 ∩ U2, alors −x ∈ U1 ∩ U2 comme U1 ∩ U2 est un
sous-espace vectoriel, et on peut écrire 0 ∈ V comme

0 + 0 = 0 = x+ (−x).

En utilisant l’unicité de l’écriture, on doit alors avoir x = 0.

Pour la même raison, on doit avoir (Ui + Uj) ∩ Uk = {0} si i, j, k sont distincts. En effet, si
y ∈ (Ui + Uj) ∩ Uk, alors il existe ui ∈ Ui et uj ∈ Uj tels que

y = ui + uj,

et on a
0 + 0 + 0 = 0 = y + (−y) = ui + uj − y,

et l’unicité de l’écriture nous donne −y = 0.

Réciproquement, supposons que x, x′ ∈ U1, y, y′ ∈ U2 et z, z′ ∈ U3 soient tels que

x+ y + z = x′ + y′ + z′.

Alors
(x− x′) + (y − y′) + (z − z′) = 0.

On a, par cette dernière équation, z − z′ ∈ U3 ∩ (U1 + U2) = {0}, ainsi z = z′. Donc

(x− x′) + (y − y′) = 0,

d’où y − y′ ∈ U2 ∩ U1 = {0}, ainsi y = y′. On obtient finalement aussi x = x′.

b) Supposons que 0 s’écrive de manière unique et soient

u1 + . . .+ un = u′
1 + . . .+ u′

n

avec ui, u
′
i ∈ Ui. Alors

(u1 − u′
1) + . . .+ (un − u′

n) = 0,

et donc ui = u′
i pour tout i.
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