Corrigé série 15 Euler 3éme année

Corrigé série 15

Exercice 1 (10 points)
a) Oui

b) Non, comme la multiplication scalaire “sort” de V. Par exemple, 1 € V et 2 € K, mais
2-1=2¢V.

c)
d)
e) Oui
f) Non. Si f,g € V, alors (f 4+ ¢)'(0) = f'(0) + ¢'(0) = 2.
g)

Exercice 2 (5 points)

On définit 'addition, pour a;,b; € V; avec i = 1,...,n, par
(a1,...,a,) + (b,...,by) := (a1 + b1,...,a, + by)
et la multiplication, pour \ € K, par
A(ay, ... a,) = (Aay, ..., Aay).

Dans le cas Vi = V5 = V3 = [y, on peut voir le produit V; x V5 x V3 comme les sommets d’un

cube de dimension 3.

Exercice 3 (10 points)

a) Oui. La fonction nulle est dérivable, la somme de deux fonctions dérivables est une fonction

dérivable, et si f est dérivable, alors A - f est dérivable pour tout A € R.
b) Non. Si f,g € W, alors (f + g)(7) = 2e # e.

¢) Oui. La fonction nulle est bornée, la somme de deux fonctions bornées est une fonction bornée,

et la multiplication par un scalaire d’une fonction bornée est une fonction bornée.
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d)

e)

Oui. Le triple (0;0;0) satisfait la condition. Si o + 2y + ez = 0 et 2/ + 2y + ez’ = 0 pour

x,y,z, 2.y, 2 € R, alors

(r+a)+2(y+y) te(z+2) = (x+2y+ez) + (¢ + 2y +e2)
=04+0=0,

et, pour tout A € R,
AT+ 2 y +edz = ANz +2y +ez) =0 =0.

Non. Considérons (1,1,0) et (0,0,1) qui sont deux éléments de 1’ensemble W. Cependant, leur

somme (1,1, 1) ne lest pas.

Exercice 4 (5 points)

On a, pour r,a,b € R,

r-(a+bi) = (ra) + (rb)i.

Comme R est non-vide stable par multiplication réelle et par addition, c¢’est un sous-R-espace

vectoriel de C. On peut choisir (1,7) comme R-base de C.

Exercice 5 (10 points)
Faux. Le R-espace vectoriel F(R,R) n’est pas de dimension finie. En effet, on peut exhiber
facilement un ensemble infini {f,, € F(R,R) | n € N} de vecteurs linéairement indépendants
en définissant pour tout z € R

1 siz=n

fa(2) = . ’

0 sinon.

Faux. On remarque que {0} C R est un R-espace vectoriel. Le “cube” étudié dans l’exercice

est un autre contre-exemple.

Vrai. Si x4, ..., 2, génére V, alors on peut retirer des vecteurs de la liste
T1yevoy Ty

tant que la liste est linéairement dépendante, sans changer Pespace qu’elle engendre. A la fin,

on obtient une liste linéairement indépendante.

Faux. Poser x = 1 et y = 0. Alors, dans R vu comme R-espace vectoriel, x et y sont linéairement

dépendants, mais x n’est pas un multiple de y.

Faux. Poser x = y = z. Alors x, y, z sont linéairement dépendants, mais ils n’engendrent qu'une

ligne.
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Exercice 6 (10 points)
On rappelle qu'un polynéme f(X) € R[X] de degré n > 0 posséde au plus n racines .

S’il existe des coefficients Ag, A1, ..., A\, € R tels que
Ao+ Apcos(x) + -+ + Ay cos™(x) =0, pour tout = € R,

alors le polyndome
Ao+ X+ X"

posséde une infinité de racines : poser X := cos(x) conduit & une solution pour tout z € R. Or,
nous savons qu’'un polynéme de degré m € N5y ne peut pas avoir plus de m racines, ainsi de

tels coefficients A\; ne peuvent pas exister, en dehors des coefficients triviaux

A =0 pour tout i =0,...,n.

Par induction : supposons que pour tout Ag,..., A, € R on ait 'implication
Ao + Apcos(z) + -+ + A, cos(nz) =0, pour tout = € R
— X\, =0 pour tout ¢=0,...,n.
Pour faire le pas d’induction, supposons qu’il existe des coefficients A, ..., A\,11 € R tels que

Ao + A1 cos(x) + A cos(2x) + - - - + A, cos(nx) + Mg cos((n+ 1)z) =0, (1)
pour tout x € R. En dérivant deux fois cette équation, on obtient
—Apcos(z) — 4Ag cos(2x) — - -+ — n*\, cos(nx) — (n + 1)*A\, 11 cos((n + 1)z) = 0, (2)

pour tout x € R. On combine maintenant ces deux équations membre & membre de la maniére

suivante
(n+1)°- (1) +(2)

pour avoir

(n+1)*Xo + M (=1 + (n+1)?) cos(x) + Xa(—4 + (n + 1)?) cos(2z)
+ o+ Ap(=n? + (n + 1)) cos(nz) = 0,

1. C’est une conséquence du fait que si f(X) € R[X] a pour racine «, alors f(X) est divisible par (X —«). Ainsi,

on peut écrire

f(X) = (X —a)-g(X),

ot g(X) est un polynome de degré n — 1; et on remarque que si f(X) a N racines, alors g(X) aura au moins N — 1

racines. Par induction, on peut supposer que g(X) a au plus n — 1 racines (comme il est de degré n — 1), ce qui

nous permet de conclure.
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pour tout x € R. Par I’hypothése d’induction, cette derniére équation implique
(n+ ) )\0

M(=14 (n+1)?)

Ao(—4+ (n+1)?)

0,
0,
0,

(=0 + (n+1)%) =0,

donc A; = 0 pour ¢ = 0,...,n. En revenant a I’équation initiale (1), on voit maintenant que

A1 = 0, ce qui établit I'induction.

Exercice 7 (10 points)

a) Les trois vérifications peuvent se faire par calculs directs. On le fait ici pour V : soient

u,v,u ,v', \ € Fy, alors
! ! +/ +/
u v n U v/ [ utu v v, cV. et
0 u 0 u 0 U+ u
). w v\ AU Av cv
0 u 0 Alu

b) Pour U, on propose

1 0 00 .
0/’\o 1 ’

pour V', on propose

1 0 0 _

0o1/’\oo ’
et, pour W, on propose

1 0 00

01/)°\L10

c) Les trois sous-espaces U NV, UNW et V NW sont égaux et on peut les écrire comme

(20 )eer)
(1)

ayant donc pour base
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Exercice 8 (5 points)
On va montrer que U + U = U. L’inclusion U C U + U est immédiate, et I'inclusion U + U C U

est une conséquence du fait que U est stable par addition.

Exercice 9 (5 points)

On propose la liste
((3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1)) .

Il est clair que ces trois vecteurs sont Q-linéairement indépendants. Pour voir qu’ils engendrent le
sous-espace de Q° considéré, choisissons
5
U= (1131,-1‘2,1'3, 1'4,.1:5) € @

tel que

r1 =31y, et x3="Tx,
Alors, ces deux conditions nous permettent de réécrire v comme

v = (3.1'2, T2, 71"47 Ty, l’5>

= 33'2(3, 1a 07 07 0) + 1'4(0, 07 7a 17 0) + $5(07 07 07 Oa 1)

Exercice 10 (5 points)
a) On pose nv := (n - 1x)v, ot la multiplication - est définie dans la donnée.
b) On a
n(Av) = (n-1g)(M) = ((n-1g)A\)v
=((Ig+...1x)N)v=A+...+ N)v = (nA)v.

n(Av) =n-1g)(A) = ((n-1g)\)v
=(An-1g))v=X(n-1x)v) = XM nv).

d) Pour tout vecteur v # Oy et A € K, on a que Av = Oy si et seulement si A = 0. En effet, en

raisonnant pas absurde, si A # 0 alors il existe un inverse A~! et on a
v=1gv=A""dv= X110, =0y.

Ainsi, nv = Oy si et seulement sin-1x = 0. Or, n-1x = 0 si et seulement si n est divisible par

la caractéristique du corps K.
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Q)

Exercice 11 (10 points)

Supposons que U NW = {0}. Soit u+w = v +w" € U+ W avec u,u’ € U et w,w’ € W. Alors

Usu—u=vw—weW,
et donc, u — v =w' —w e UNW = {0}. Ainsi, on a
u—u' =0 et w—w=0,

ce qui montre I'unicité de I’écriture.

Soitz e UNW. Alorsz =u+0avecucUet0€ Woualorsz=0+wavecO € UetweW.

L’unicité de la décomposition de = implique alors que u =0 et w = 0.

Ainsi, £ =0+ 0= 0. Donc UNW = {0} et U + W est une somme directe.

On peut également procéder par contraposition :

Si U + W n’est pas une somme directe, alors Jv £ 0 dans U N W.

La décomposition de v comme somme d’un élément de U et d’un élément de V' n’est pas unique
carv=v+0avecveUet0ec W oualorsavec 0 € U et v € W.

L’égalité Uy + Uy + Us = V est immédiate, comme Uy + Uy =V et U3 C V.
Il est aussi immédiat que

— U;NUy; =0, car pour u € Uy, z=0et pouru e Usy,z =y =0

— U;NU3 =0, car pour u € Uy,z=0 et pour u € U3,z =0

— UiNU;=0 et UsNU;=0.

On consideére dans V = R3 les sous-espaces

Uy ={(z,y,0) | z,y € R},

Uy ={(0,0,z2) |z € R},

Us = {(0.9,9) |y € R}.

Onabien V=U,+ U+ Usetet UyNU; ={(0,0,0)} sii#j.

Non, par exemple 0 s’écrit comme

0=(0,1,0) + (0,0,1) + (0, =1, —1).
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Exercice 12 (10 points)

Supposons que V = U; @ Uy @ U;. Clairement U; N U; = {0} si i # j, car sinon I'écriture de 0
ne serait pas unique : par exemple si x € Uy N Us, alors —x € U; N Uy comme U; N Us est un

sous-espace vectoriel, et on peut écrire 0 € V' comme
0+0=0=z+(—2).

En utilisant 'unicité de 1’écriture, on doit alors avoir x = 0.

Pour la méme raison, on doit avoir (U; + U;) N Uy, = {0} si 4,7, k sont distincts. En effet, si
y € (U; + U;) N Uy, alors il existe u; € U; et u; € U; tels que

Y = u; + uy,

et on a
04+04+0=0=y+ (~y) = u +u; — v,

et 'unicité de I’écriture nous donne —y = 0.

Réciproquement, supposons que xz,x’ € Uy, y,y’ € Uy et z, 2" € Uz soient tels que
r+ytz=a+y +7.

Alors
(z—2)+(y—y)+(z-2)=0.

On a, par cette derniére équation, z — 2’ € U3 N (U; + Uy) = {0}, ainsi z = 2’. Donc
(w—2)+@y—y)=0

d'oty —y € UyNU; = {0}, ainsi y = ¢'. On obtient finalement aussi x = 2.

Supposons que 0 s’écrive de maniére unique et soient
U+ ...+ U, =U; + ...+ U,

avec u;, u, € U;. Alors

et donc u; = u; pour tout i.



