
III. Espaces vectoriels

Nous savons donc ce qu’est un corps, et nous en avons une bonne brochette à disposition en cas

de besoin : non seulement Q, R et C, mais aussi les corps Fp de p éléments, pour tout p premier.

Nous allons maintenant développer la théorie des espaces vectoriels sur un corps K, c’est-à-dire

des droites, plans, espaces, hyper-espaces construits sur K, où l’on peut additionner les "vecteurs"

entre eux et les multiplier par des scalaires de K, tout comme vous l’avez fait pour les classes

d’équivalence de flèches dans le plan réel et l’espace réel.

1 Définition et propriétés élémentaires

Soit K un corps. On note 0K le zéro, l’élément neutre additif, et 1K l’unité, l’élément neutre

multiplicatif, de K. Ce corps est souvent appelé le corps de base des K-espaces vectoriels que nous

sommes sur le point de définir.

Définition 1.1. Un espace vectoriel sur K ou K-espace vectoriel est un groupe abélien (V,+),

noté additivement, muni d’une action de K, c’est-à-dire une application K → V ↑ V notée mul-

tiplicativement (ω, v) ↓↑ ωv, de sorte que :

a)

b)

c)

On appelle vecteurs les éléments de V et scalaires les éléments de K.
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Voici quelques propriétés élémentaires, valides dans tous les espaces vectoriels.

Lemme 1.2. Soient ω,ω1, . . . ,ωn ↔ K et v, v1, . . . , vm ↔ V . Alors :

a) 0K · v = 0V = ω · 0V ;

b) (↗ω)v = ↗ωv = ω(↗v) ;

c)

(
n∑

i=1

ωi

)
·
(

m∑

j=1

vj

)
=

(
n∑

i=1

m∑

j=1

ωivj

)
.

Démonstration.

a) On écrit 0K = 0K + 0K et on conclut comme la semaine passée.

b) On calcule par exemple (↗ω)v + ωv = (↗ω+ ω)v = 0K · v = 0V , si bien que (↗ω)v = ↗ωv.

c) Découle de la distributivité et se montre par récurrence sur m et sur n.

Commençons par les exemples évidents.

Exemple 1.3. Tout ensemble contenant uniquement l’élément nul d’un corps K est un espace

vectoriel sur K. On parle de l’espace vectoriel nul.

Exemple 1.4. Le corps K lui-même est toujours un espace vectoriel sur K. L’action est alors

simplement la multiplication de K.

Exemple 1.5. Si V et W sont deux K-espaces vectoriels, on munit V → W de la structure

d’espace vectoriel produit. La somme est (v, w) + (v→, w→) = (v + v→, w + w→) et l’action est définie

par ω(v, w) = (ωv,ωw). Ainsi le plan réel R→ R est un espace vectoriel. Les éléments sont

Exemple 1.6. Soit X un ensemble et F(X,K) l’ensemble de toutes les applications f : X ↑ K.

On définit l’addition "point par point" en posant

et l’action en posant

On vérifie facilement qu’il s’agit d’un espace vectoriel sur K.
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Lorsque X = {x, y} est un ensemble de deux éléments, alors F(X,K) s’identifie à K → K

puisqu’une application f est complètement déterminée par la donnée de deux images f(x) et f(y).

En revanche, lorsque X est un ensemble infini, cet espace vectoriel devient très grand !

Par exemple, lorsque X = N, les applications f : N ↑ K sont toutes les suites dans K.

Lorsque X est encore plus grand, comme R, on obtient en particulier l’espace vectoriel F(R,R) de

toutes les fonctions réelles, continues ou non !

2 Les sous-espaces vectoriels

Tout comme les groupes contiennent des sous-groupes et les anneaux contiennent des sous-

anneaux, les espaces vectoriels contiennent des sous-espaces vectoriels. Tout juste après la défini-

tion, nous verrons un critère qui permet de les reconnaître.

Définition 2.1. Soit V un K-espace vectoriel.

Un sous-ensemble non-vide W ↘ V est un sous-espace vectoriel de V si l’addition et l’action de V

se restreignent à W et le munissent d’une structure de K-espace vectoriel.

Exemple 2.2. Considérons R3
le R-espace vectoriel des triplets (a, b, c) de nombres réels.

Soit le sous-ensemble W = {(a, b, c) | a+ b+ c = 0}.
C’est un sous-espace vectoriel de R3

car

Cet exemple indique qu’il y a en général peu d’éléments à vérifier pour voir si un sous-ensemble

est un sous-espace vectoriel.
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Proposition 2.3. Soit V un K-espace vectoriel et W ↘ V . Alors W est un sous-espace de V si
et seulement si

a) 0 ↔ W ;

b) x+ y ↔ W pour tous x, y ↔ W ;

c) ωx ↔ W pour tous ω ↔ K et x ↔ W .

Démonstration. Les trois conditions sont clairement nécessaires car W doit être muni d’une somme

avec élément neutre et d’une action. Montrons qu’elles sont su!santes.

Exemple 2.4. Considérons l’espace vectoriel F(R,R) de toutes les fonctions réelles.

Alors les sous-ensembles suivants sont tous des sous-espaces vectoriels réels :

a) Les fonctions

b) Les fonctions

c) Les fonctions

d) Les fonctions

Les opérations ensemblistes d’intersection et d’union se comportent de manière distincte par

rapport à la structure d’espace vectoriel.

Lemme 2.5. Toute intersection de sous-espaces vectoriels est un sous-espace vectoriel.

Démonstration. On veut montrer que les trois propriétés de la proposition sont vérifiées.

(i) Si 0 ↔ Wi pour une famille Wi ↘ V de sous-espaces, alors 0 ↔
⋂

Wi.

(ii) Si x, y ↔
⋂

Wi, alors x, y ↔ Wi pour tout i. Comme tous les Wi sont des sous-espaces

vectoriels, on a que x+ y ↔ Wi pour tout i, donc x+ y ↔
⋂
Wi.

(iii) Si x ↔
⋂
Wi et ω ↔ K ≃ x ↔ Wi pour tout i ≃ ωx ↔ Wi pour tout i ≃ ωx ↔

⋂
Wi.
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En revanche, la réunion de deux sous-espaces n’est pas un sous-espace en général.

Dans (F2)2, les sous-ensembles W1 = {(0, 0), (0, 1)} et W2 = {(0, 0), (1, 0)} sont des sous-espaces,

mais pas la réunion puisque

Il vaut mieux travailler avec la somme W1 +W2 = {x+ y | x ↔ W1, y ↔ W2}.
Si W1 ⇐W2 = {0}, on dit que la somme W1 +W2 est directe et on note alors W1 ⇒W2.

Lemme 2.6. Soit V un K-espace vectoriel.
La somme de sous-espaces vectoriels de V est un sous-espace vectoriel de V .

3 Combinaisons linéaires

Vous avez déjà aperçu l’importance des combinaisons linéaires l’année passée lorsque vous avez

brièvement parlé des bases de R2
et R3

. Nous travaillons ici avec un K-espace vectoriel V .

Définition 3.1. Soit S ↘ V .

On note < S > l’intersection de tous les sous-espaces vectoriels de V qui contiennent S.

On appelle S un système de générateurs de < S > et on dit que S engendre < S >.

Lorsque S = {x}, on note aussi Kx =< {x} >.

Le sous-espace < S > est le plus petit sous-espace de V qui contient S.

Explicitement, les éléments de < S > sont des combinaisons linéaires d’éléments de S.

Définition 3.2. Soit S ↘ V . On dit que x ↔ V est une combinaison linéaire d’éléments de S s’il

existe des scalaires ω1, . . . ,ωn ↔ K et des vecteurs x1, . . . , xn ↔ S tels que x = ω1x1 + · · ·+ ωnxn.

Proposition 3.3. Soit S ↘ V .
Alors < S > est l’ensemble de toutes les combinaisons linéaires d’éléments de S.

Démonstration. Appelons W l’ensemble de toutes les combinaisons linéaires d’éléments de S.
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Remarque 3.4. Soient W1,W2 des sous-espaces de V . Alors W1 +W2 = < W1 ⇑W2 >.

Définition 3.5. Soient x1, . . . , xn ↔ V . On dit que ces vecteurs sont linéairement indépendants ou

libres si l’unique suite de scalaires ω1, . . . ,ωn ↔ K tels que

ω1x1 + · · ·+ ωnxn = 0

est donnée par ω1 = · · · = ωn = 0.

Si ce n’est pas le cas, on dit qu’ils sont linéairement dépendants ou liés.

Aucun vecteur d’une suite libre ne peut être nul, car, si x1 = 0,

Tout ensemble contenant un unique élément non nul est forcément libre.

Par convention, l’ensemble vide est libre.

Exemple 3.6.
Dans C2

, les éléments x1 = (1; i) et x2 = (1 + i; i↗ 1) sont

Les éléments y1 = (1; i) et y2 = (i; 1)

4 Bases

Les meilleurs systèmes de générateurs d’un espace vectoriel sont les plus petits.

Ceci nous conduit à définir ce qu’est une base d’un K-espace vectoriel V .

Définition 4.1. Une base de V est un sous-ensemble ordonné et libre B ↘ V qui engendre V .

Si V admet une base finie, on dit que V est de dimension finie.
On note (e1, . . . , en) la base formée des vecteurs e1, . . . , en car l’ordre des éléments compte.

Exemple 4.2. Soit V = Kn
. La base canonique de Kn

est composée des n vecteurs

e1 = (1K ; 0K ; . . . ; 0K), e2 = (0K ; 1K ; 0K , . . . ; 0K), . . . , en = (0K ; . . . ; 0K ; 1K).

Ces vecteurs sont visiblement linéairement indépendants.

Ils engendrent Kn
car (ω1; . . . ;ωn) = ω1e1 + · · ·+ ωnen.

Le lemme suivant explique comment enlever un vecteur "en trop" d’une famille liée.
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Lemme 4.3. de dépendance linéaire.
Si x1, . . . , xm sont linéairement dépendants et x1 ⇓= 0V , il existe 2 ⇔ j ⇔ m tel que
xj ↔ < x1, . . . , xj↑1 > et les vecteurs x1, . . . , xj↑1, xj+1, . . . , xm engendrent < x1, . . . , xm >.

Démonstration. Par dépendance linéaire, il existe une combinaison linéaire ω1x1 + . . .ωmxm = 0V
où les ωi ne sont pas tous nuls.

Puisque x1 ⇓= 0V , il existe j ↖ 2 tel que ωj ⇓= 0K . Choisissons le plus grand j qui vérifie cela.

En multipliant par l’inverse de ωj et en isolant xj, nous obtenons

ce qui conclut la preuve de la première assertion. Pour montrer la seconde, il su!t de remarquer que

toute combinaison linéaire µ1x1+ · · ·+µmxm peut aussi s’écrire, en remplaçant xj par l’expression

ci-dessus,

Le lemme de dépendance linéaire permet d’extraire une base de chaque système de générateurs.

Théorème 4.4. Soit x1, . . . , xm un système de générateurs de V .
Alors il existe des indices 1 ⇔ k1 < · · · < kn ⇔ m tels que (xk1 , . . . , xkn) forme une base de V .

Démonstration. Si les vecteurs sont linéairement indépendants, il n’y a rien à faire, ils forment

déjà une base. Si x1 = 0V , nous éliminons x1 de la liste. Sinon, nous appliquons le Lemme de

dépendance linéaire et éliminons xj pour l’indice j décrit dans le lemme.

Nous continuons ensuite ce processus et nous arrêtons lorsque les vecteurs restants sont libres.

Exemple 4.5. Soient (1; 2), (3; 6), (4; 7) et (5; 9) des vecteurs de Q2
.

Ils sont linéairement dépendants puisque par exemple

7



Espaces vectoriels Euler 3ème année

Voyons maintenant que toute partie libre de V peut être complétée en une base.

Théorème 4.6. de la base incomplète.
Soit V un K-espace vectoriel de dimension finie, L = {x1, . . . , xk} une famille de vecteurs linéai-
rement indépendants et S = {y1, . . . , ym} un système de générateurs de V .
Alors Il existe une base B de V telle que L → B → L ↑ S.

Démonstration. Considérons les vecteurs x1, . . . , xk, y1, . . . , ym. C’est un système de générateurs.

On peut donc appliquer le théorème précédent pour en extraire une base.

Puisque x1, . . . , xk est libre, la méthode d’élimination laisse intacte les k premiers vecteurs.

Dans l’optique de définir la dimension d’un espace vectoriel, nous terminons cette section en

montrant qu’une famille libre ne peut pas avoir plus de vecteurs qu’un système de générateurs.

Proposition 4.7. Soit V un espace vectoriel de dimension finie, L = {x1, . . . , xk} une partie libre
et S = {y1, . . . , ym} un système de générateurs. Alors k ↓ m.

Démonstration.
S est un système de générateurs ↔ S1 = {x1, y1, . . . , ym} est

Or x1 ↗= 0 car

On applique donc le lemme 4.3 de dépendance linéaire qui élimine

Finalement, on obtient un système de générateurs de la forme {x1, . . . , xk, ya1 , . . . , yam→k
} qui

contient toujours éléments. En e!et, la méthode du lemme laisse intact les premiers vecteurs

de la famille s’ils sont linéairement indépendants. et pour chaque vecteurs xi ajouté, on a éliminé

exactement un vecteurs yj. On a donc bien enlevé k vecteurs de S, si bien que k ↓ m.
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