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[1I. Esspaces vectoriels

Nous savons donc ce qu’est un corps, et nous en avons une bonne brochette a disposition en cas
de besoin : non seulement @, R et C, mais aussi les corps F,, de p éléments, pour tout p premier.
Nous allons maintenant développer la théorie des espaces vectoriels sur un corps K, c’est-a-dire
des droites, plans, espaces, hyper-espaces construits sur K, ou ’on peut additionner les "vecteurs"
entre eux et les multiplier par des scalaires de K, tout comme vous 'avez fait pour les classes

d’équivalence de fléches dans le plan réel et 'espace réel.

1 Deéfinition et propriétés élémentaires

Soit K un corps. On note Ox le zéro, ’élément neutre additif, et 15 'unité, ’élément neutre
multiplicatif, de K. Ce corps est souvent appelé le corps de base des K-espaces vectoriels que nous

sommes sur le point de définir.

Définition 1.1. Un espace vectoriel sur K ou K-espace vectoriel est un groupe abélien (V,4),
noté additivement, muni d’une action de K, c’est-a-dire une application K x V' — V notée mul-
tiplicativement (A, v) — Av, de sorte que : v v,w € V %J\' v/&, AeK

a) X'(/{MV) = (>\‘/UL)°V (&SSOdm\)va‘df bo ‘Q1Ml’f0m>
b) ()—\—,«ﬂ\/:)\v-l-/wv 2k >\(v+w):>\v+>\w
) 4V =V

On appelle vecteurs les éléments de V' et scalaires les éléments de K.
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Voici quelques propriétés élémentaires, valides dans tous les espaces vectoriels.

Lemme 1.2. Soient \,\1,..., A\, € K et v,vq,...,0,, € V. Alors :
CI,) OK 'U:OV:)\'OV;
b) (=N\)v=—=Xv=A(—v);

() (£ (550

j=1 =1 j=1

Démonstration. . Ilu \-
l' b wmeme euw pos N
JI &,0_ 0\{ S 0\]‘ + OV .

b) On calcule par exemple (—=A)v + Av = (=X + v Lo, -v 0 Oy, si bien que (—A\)v = —\v.

o®
c) Découle de la distributivité et se montre par récurrence sur n\@ et sur n. \ .}\
= V.
St mswn=? ()\4 *')‘?,} : (Va"'V’L\) = >\4 Va 1'\’2) + N, ( Vit VL) = MVq+ /}Vl+ >‘@\’4'f V2
T dtskes Y asobuib bis.

Commencons par les exemples évidents.

a) On écrit O = 0 + O et on conclut \Somme la s{ﬂnﬁmﬁgée. OVt p“-*:

Exemple 1.3. Tout ensemble contenant uniquement 1’élément nul d'un corps K est un espace

vectoriel sur K. On parle de I'espace vectoriel nul.

Exemple 1.4. Le corps K lui-méme est toujours un espace vectoriel sur K. L’action est alors

simplement la multiplication de K.

Exemple 1.5. Si V et W sont deux K-espaces vectoriels, on munit V' x W de la structure
d’espace vectoriel produit. La somme est (v, w) + (v, ') = (v + v/, w + w’) et action est définie

par A(v,w) = (Av, Aw). Ainsi le plan réel R x R est un espace vectoriel. Les éléments sont
“le,s ?b\'n\".& AEC\M por bes FU.;.&J ( ¢, b) o o, L eIk ;
0. Q Ve
qux’ ow ‘bw\r et anx vecdeuss ( . ) ) dases d cqu.l,umc

b Q\ic?u» bowbvwwulz wn fm\wL (X',Ua) 177 Poim" (Xi-&,t(ji—l:))
Y X, ¢ IR.

Exemple 1.6. Soit X un ensemble et F(X, K) I'ensemble de toutes les applications f: X — K.
On définit I’addition "point par point" en posant (@ + ) (X) = C(’() + %(X) ) ¥X £ X
et l'action en posant (>\£) (X\ = >\ @(K) ) \'I >\ e K ) VX & X

On vérifie facilement qu’il s’agit d’un espace vectoriel sur K.
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Lorsque X = {z,y} est un ensemble de deux éléments, alors F(X, K) s’identifie & K x K

puisqu’une application f est complétement déterminée par la donnée de deux images f(z) et f(y).
En revanche, lorsque X est un ensemble infini, cet espace vectoriel devient trés grand !
Par exemple, lorsque X = N; les applications f : N — K sont toutes les suites dans K.
Lorsque X est encore plus grand, comme R, on obtient en particulier I’espace vectoriel F(R,R) de

toutes les fonctions réelles, continues ou non!

2 Les sous-espaces vectoriels

Tout comme les groupes contiennent des sous-groupes et les anneaux contiennent des sous-
anneaux, les espaces vectoriels contiennent des sous-espaces vectoriels. Tout juste aprés la défini-

tion, nous verrons un critére qui permet de les reconnaitre.

Définition 2.1. Soit V un K-espace vectoriel.
Un sous-ensemble non-vide W C V' est un sous-espace vectoriel de V' si I’addition et ’action de V'

se restreignent & W et le munissent d’une structure de K-espace vectoriel.

Exemple 2.2. Considérons R? le R-espace vectoriel des triplets (a, b, c) de nombres réels.
Soit le sous-ensemble W = {(a,b,c) |a+ b+ c = 0}.

C’est un sous-espace vectoriel de R? car
°(O',°', 0)6.\!\} puksque O+0+0 =0 | |
) (a’) bﬂ*) ) (O"I) U,cl) & W ) ors (0\‘*‘0“} b'}Ib)'C'I‘C)éWO
pUAdquL (a+a') + (\>+ l:'>+(c+c'> = (cu b+c)+ (a'+l>+c> - 0+0:0.
CQ (a,b,c> ¢ W )ou\or.s )(a,b,c) Ay Jow(squu&
Ya + Ab + Ac :>\(0\.+(0+6):— A-O:O(
= ‘I&c&r&i\n‘ov\ t}Y P G\Ctl'om Somlf fmt%we.s a W 9,(“ W)"'>1
= ‘ fZg- (w-+) Qm}.
esd wu avou(ée abelien ET [[ ,+>D ;

Cet exemple indique qu’il y a en général peu d’éléments a vérifier pour voir si un sous-ensemble

est un sous-espace vectoriel.
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Proposition 2.3. Soit V' un K-espace vectoriel et W C V. Alors W est un sous-espace de V si
et seulement si

a) 0e W
b) x+y €W pour tous x,y € W ;
c) \x € W pour tous A € K etz € W.

S—
DémonstmtioLb—-Zis trois conditiog:j[ut clairement nécessaires car W doit étre muni d’une somme

21 - . -
avec élément neutre et d’une actior=Montrons qu’elles sont suffisantes.

NP o 0eW
g (\N -,+> est unm %fcw‘oe &L{é’\;\(}/\ our " P;owﬂ,{i} E) ail;\_-i
P“O(Y\Aﬁ{ (‘/) qtu. Viows (z)nxcw\\‘l\' W oppo»é: Powr Q‘o 7&/1 W‘;\l .
e a.»ocio.){l\ri\k' o & &Cbhi'om[r\'vité ok LE-PML que e T
¢ hevk de VO W -

Exemple 2.4. Considérons I'espace vectoriel F(R,R) de toutes les fonctions réelles.

Alors les sous-ensembles suivants sont tous des sous-espaces vectoriels réels :

a) Les fonctions POQ)SA L:)‘MXGX&S

b) Les fonctions A&N\'p{wk\lé .

c) Les fonctions C,O\/\A\'a.\/\)fti

d) Les fonctions "\'I igbhbmé\;\'{tlw&& .

Les opérations ensemblistes d’intersection et d’'union se comportent de maniére distincte par

rapport a la structure d’espace vectoriel.
Lemme 2.5. Toute intersection de sous-espaces vectoriels est un sous-espace vectoriel. ﬂ

Démonstration. On veut montrer que les trois propriétés de la proposition sont vérifiées.
(i) Si 0 € W; pour une famille W; C V' de sous-espaces, alors 0 € (| W;.

(i) Si x,y € W, alors z,y € W; pour tout i. Comme tous les W; sont des sous-espaces
vectoriels, on a que x +y € W, pour tout i, donc z +y € (| W;.

(iii) Sizx e Wi et A € K = x € W; pour tout ¢ = Az € W; pour tout i = Az € (| W,.
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En revanche, la réunion de deux sous-espaces n’est pas un sous-espace en général.
Dans (F3)?, les sous-ensembles W; = {(0,0), (0,1)} et Wy = {(0,0),(1,0)} sont des sous-espaces,
mais pas la réunion puisque W/l v Wz s ( 0;0); CO'/ A—) ) (/1‘,0')

(O',«L3+ (4.,0) = (4-,/1) 6/ W, u W,

I vaut mieux travailler avec la somme Wy + Wy = {x +y |z € Wi,y € Wh}.
Si Wi N Wy = {0}, on dit que la somme W; + W est directe et on note alors Wy & W. { (0 )3
0

1 -
Lemme 2.6. Soit V un K-espace vectoriel. M \ U(@wP\g_ ) Wy n W'L -

La somme de sous-espaces vectoriels de V' est un sous-espace vectoriel de V. A-owc on 0 e Swawnc

ijb W, oW, "(Fl}

3 Combinaisons linéaires

Vous avez déja apercu I'importance des combinaisons linéaires I’année passée lorsque vous avez

briévement parlé des bases de R? et R3. Nous travaillons ici avec un K-espace vectoriel V.

Définition 3.1. Soit S C V.

On note < S > l'intersection de tous les sous-espaces vectoriels de V' qui contiennent S.
On appelle S un systéme de générateurs de < S > et on dit que S engendre < S >.
Lorsque S = {z}, on note aussi Kz =< {x} >.

Le sous-espace < .S > est le plus petit sous-espace de V' qui contient S.

Explicitement, les éléments de < S > sont des combinaisons linéaires d’éléments de S.

Définition 3.2. Soit S C V. On dit que x € V est une combinaison linéaire d’éléments de S s’il

existe des scalaires Ay, ..., \, € K et des vecteurs x1,...,x, € S tels que == \z1+ -+ \,x,.

Proposition 3.3. Soit S C V.

Alors < S > est l’ensemble de toutes les combinaisons linéaires d’éléments de S.

Démonstration. Appelons W I’ensemble de toutes les combinaisons linéaires d’éléments de S.

(#)
(85 CW W ek un cev® eV e 0 eW (MQD_|CL*WA\£)
el' “Q(k Covwivne (LL (b.».x CL ,é\imw\'c é.b g %" wCLJMm‘/_ﬁ&&g
Q,\' \'ow\' vnu“’*c‘vou AI une C.L A'é\iw\mh AL, g u\' Wwne CL

' éume.u\_\ be ¢ Awsi 3Y CW.
W C {87 Uit U wn SEV 4V olu,«, wnlrent ‘eré[f,wtemh b S V.

G XayXa,y o, Xy, & S c VU, alovs pur prop 2.% "'cTA\" P“’MLDAZX(GU
b T hx, €U = WU, ¥SEV VDS,
= W c <L8&7. !

*®) SEV = Qou.s-&fau\/f.o‘rwt{ﬂ o CL = (o boinatson Linfate
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Remarque 3.4. Soient Wi, W5 des sous-espaces de V. Alors Wi + Wy = < W, U Wy >

Définition 3.5. Soient z1,..., 2, € V. On dit que ces vecteurs sont linéairement indépendants ou

libres si I'unique suite de scalaires Ay, ..., \, € K tels que
)\1$1++)\n$n20

est donnée par A\ =--- =\, =

Si ce n’est pas le cas, on dit qu’ils sont linéairement dépendants ou liés.

Aucun vecteur d’une suite libre ne peut étre nul, car, si z; = 0,, )

Lok, + Quat Qe ot O = Oy

=0 X0
v _ ovte \%
Tout ensemble contenant un unique élément non nul est forcément libre. - >\ x =0
Par convention, I’ensemble vide est libre. = >\ - OI(
Exemple 3.6.

Dans C2, les éléments x; = (1;4) et x5 = (1 + ;4 — 1) sont ‘QA)NQMFWWL ‘h’ MS
(/1+L) X4 = (/1+£)(4.,L3 :(A.l_(_ | L - \=X7, =S A-l-\.))( -X?__ 0, O)
Les éléments y; = (154) et yo = (i;1) Somk ‘QL‘O\-Q..S (o

o |-b
A T ai 4 A= 0| 4 B
-0
. -0 =D 2/5:0 = B
4 ]\Bases ST+ s S 140.-0 D o=0

1
Les meilleurs systémes de générateurs d’un espace vectoriel sont les plus petits.

Ceci nous conduit & définir ce qu’est une base d’'un K-espace vectoriel V.

Définition 4.1. Une base de V est un sous-ensemble ordonné et libre B C V' qui engendre V.
Si V' admet une base finie, on dit que V' est de dimension finie.

On note (61, ceey en) la base formée des vecteurs ey, ..., e, car I'ordre des éléments compte.

Exemple 4.2. Soit V = K. La base canonique de K" est composée des n vecteurs
e1 = (1x;0k;...;0k),e2 = (Ox; 1x; Oy .. 5 0k), - yen = (Ok; ... 0ks 1),

Ces vecteurs sont visiblement linéairement indépendants.

IIs engendrent K™ car (A1;...;\,) = Ajer + -+ + Apen.

Le lemme suivant explique comment enlever un vecteur "en trop" d’une famille liée.
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Lemme 4.3. de dépendance linéaire.
St xy,..., T, sont linéairement dépendants et x1 # Oy, il existe 2 < j < m tel que

r; € < Ty,...,Tj—1 > et les vecteurs x1,...,Tj_1,%j11,...,Tm engendrent < Ty, ..., T, >.

Démonstration. Par dépendance linéaire, il existe une combinaison linéaire \ix1 + ... \,,2,, = Oy

ou les \; ne sont pas tous nuls.

Puisque z;1 # Oy, il existe j > 2 tel que A; # 0. Choisissons le plus grand j qui vérifie cela. (&1‘_ >\(\ 7/ O>
En multipliant par I'inverse de A; et en isolant z;, nous obtenons

\ \ N = = =0
Xé i )\43‘4 ‘ﬁf?. — s T _b-_l XB-A ( XQ"" Z .- = >\w )
SIS M

ce qui conclut la preuve de la premiére assertion. Pour montrer la seconde, il suffit de remarquer que
- S C , :
toute combinaison linéaire piz, + p&xit [m Ty, Peut aussi s’écrire, en remplagant x; par I’expression

ci-dessus,

(/’*«‘/’% %) Kot =+ (M~ M xﬁ: gt g Xt X

Le lemme de dépendance linéaire permet d’extraire une base de chaque systéme de générateurs.

Théoréme 4.4. Soit xy,...,x, un systéme de générateurs de V.

Alors il existe des indices 1 < ky < --- < k, < m tels que (vg,,...,xx,) forme une base de V.

Démonstration. Si les vecteurs sont linéairement indépendants, il n’y a rien & faire, ils forment
déja une base. Si x; = 0Oy, nous éliminons x; de la liste. Sinon, nous appliquons le Lemme de
dépendance linéaire et éliminons x; pour I'indice j décrit dans le lemme.

Nous continuons ensuite ce processus et nous arrétons lorsque les vecteurs restants sont libres. [

Exemple 4.5. Soient (1;2),(3;6), (4;7) et (5;9) des vecteurs de Q2.

Ils sont linéairement dépen(éants puisque p(ar exemple
%(A-,'Z.X_ 3':é’> = 0)03 |
= On %\'th'mt (3',6\ . le:wx(' (’1',7-)', (Lf_‘q) o+ (§)5> . Hw.;)

(4.2) v(u,1) - (5,9) = (0;0) = On douine (5,9)

\3\ \-c,a\re, (’1‘,2,) < ('f,;‘) qw, gML uQ,{,Lﬂ_j o
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Voyons maintenant que toute partie libre de V' peut étre complétée en une base.

Théoréme 4.6. de la base incompléte.

Soit V' un K-espace vectoriel de dimension finie, L = {xy,...,x} une famille de vecteurs linéai-
rement indépendants et S = {y1,...,Yym} un systéme de générateurs de V.

Alors 1l existe une base B de V telle que L C B C LUS.

Démonstration. Considérons les vecteurs xy,...,Tr, Y1, ..., Ym. C'est un systéme de générateurs.
On peut donc appliquer le théoréme précédent pour en extraire une base.

Puisque z1, ...,z est libre, la méthode d’élimination laisse intacte les k premiers vecteurs. O

Dans l'optique de définir la dimension d’un espace vectoriel, nous terminons cette section en

montrant qu’une famille libre ne peut pas avoir plus de vecteurs qu’'un systéme de générateurs.

Proposition 4.7. Soit V' un espace vectoriel de dimension finie, L = {1, ...,z } une partie libre
et S =A{y1,...,ym} un systéme de générateurs. Alors k < m.
Démonstration.

S est un systéme de générateurs = S = {1 y1, ..., ym} est Uee  Car Xgq S Z A Ye
Or 21 # 0 car A a‘o\oo.tk'wjr o L qus et libee .

On applique donc le lemme 4.3 de dépendance linéaire qui dlimine Lun  des 43 touk on
maivkenant wn Sts.sl-f‘.mc de csév\{fo»"wr < 5 ovu tonk ek X, .

Ow O-‘ou,\:b dors Xo en T po}ihan dans S, oF on viitéve
‘(?‘ é,\kwdm&\:\'ou &‘uv\. ‘33 .
Ow répl\:(- “Qloyf'.mtiom “?‘C— Pols pour f\“&r *"“‘5 \'35 X daws Se-'l-i

Finalement, on obtient un systéme de générateurs de la forme {z1,..., Tk Yays---Ya,,_,} qui
contient toujours Wa éléments. En effet, la méthode du lemme laisse intact les premiers vecteurs
de la famille s’ils sont linéairement indépendants. et pour chaque vecteurs x; ajouté, on a éliminé

exactement un vecteurs y;. On a donc bien enlevé k vecteurs de S, si bien que k£ < m.
O



