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Problem Set 8

For the Exercise Session on Dec 17

Last name First name SCIPER Nr Points

Problem 1: Choose the Shortest Description

Suppose Co : U — {0,1}* and C; : U — {0,1}* are two prefix-free codes for the alphabet /. Consider
the code C : U — {0,1}* defined by

Clu) = [0,Co(w)] if lengthCp(u) < lengthCy (u)
[1,C1(u)] else.

Observe that length(C(u)) = 1 + min{length(Co(u)),length(Cy(u))} .

(a) Is C a prefix-free code? Explain.

(b) Suppose Cy,...,Cx_1 are K prefix-free codes for the alphabet /. Show that there is a prefix-free
code C with
length(C(u)) = [log, K| + o length(Cr(u)).

(c) Suppose we are told that U is a random variable taking values in U , and we are also told that the
distribution p of U is one of K distributions py,...,px—1, but we do not know which. Using (b)
describe how to construct a prefix-free code C such that

Ellength(C(U))] < [logy K1+ 1+ H(U).
[Hint: From class we know that for each & there is a prefix-free code Cj, that descibes each letter
u with at most [—log, pr(u)] bits.]

Problem 2: Tighter Generalization Bound

[10pts] Let D = Xy, ..., X,, iid from an unknown distribution Px, let H be a hypothesis space, and
{:H x X — R be a 02— subgaussian loss function for every h. In the lecture we have seen that the
generalization error can be upper bounded using the mutual information.

2021(D; H)

[Eppy [Lpy (H) = Lp(H)]| < -

(i) Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all h € H, £(h, X)

is 02— subgaussian in X, then

Ep,,, [LPX(H)LD(H)HS\/Qg?Z?_;I(Xi;H)'

Hint: Recall from the lecture notes that

B (L () =~ Lo(E]| < = 3 (B [0CH, X0)] = Ep, py [0, X))
i=1



(i)

(iii)

Show that, this new bound is never worse than the previous bound by showing that,

n
Z (X H).

Let us consider an example. Assume that D = X1,.., X,,, n > 1, are i.i.d. from AN(6,1), and that
we do not know 6. We want to learn 6 assuming the loss ¢(h,x) = min(1, (h — z)?) (which is
bounded) and H = R. Our learning algorithm outputs H = - 3"  X;. Use the new bound to
show that

1

|]EPDH [LPX (H) - LD(H)] | < m

How does the old bound perform in this example?
Hint: Adding independent gaussian random variables, you get a gaussian random variable.

Problem 3: Lower bound on Expected Length

Suppose U is a random variable taking values in {1,2,...}. Set L = [log, U|. (L.e., L = if and only
if 29 <U <2+l j=0,1,2,.

Show that H(U|L =j) <j, j=0,1,....

Show that H(U|L) < E[L].

Show that H(U) < E[L] + H(L).

Suppose that Pr(U =1) > Pr(U =2) > ... . Show that 1 > iPr(U =1).

With U as in (d), and using the result of (d), show that E[log, U] < H(U) and conclude that
E[L] < H(U).

Suppose that N is a random variable taking values in {0, 1,...} with distribution py and E[N] =

w. Let G be a geometric random variable with mean y, i.e., pg(n) = p™/(1+ p)**", n > 0.
Show that H(G) — H(N) = D(pn|pg), and conclude that H(N) < g(p) with g(z) = (1 +
x)logy (1 + ) — xlogy .
[Hint: Let f(n,u) = —logypa(n) = (n+ 1)logy (1 + ) — nlogy(u) . First show that E[f(G, u)] =
E[f(N, )], and consequently H(G) =3, pn(n)logs(1/pa(n)) ]

)

Show that for U as in (d) and g(z) as in (f),

E[L} > H({U) - g(H(U)).

[Hint: combine (f), (e), (c).]

Now suppose U is a random variable taking values on an alphabet U, and ¢: U — {0,1}* is an

injective code. Show that
Ellengthc(U)] = H(U) — g(H(U)).

[Hint: the best injective code will label U = {a1,as,as,...} so that Pr(U = a;) > Pr(U = ag) >
, and assign the binary sequences \,0,1,00,01,10,11,... to the letters ay,as,... in that order.
Now observe that the i’th binary sequence in the list A,0,1,00,01,... is of length |log,i].]



