Solution Set 14

Problem 1: Convergence and inequalities

Let $(X_n, n \ge 1)$ be a sequence of i.i.d. non-negative random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such that there exists $0 < a < b < +\infty$ with $a < X_n(\omega) \le b$ for all $n \ge 1$ and $\omega \in \Omega$. Let also $(Y_n, n \ge 1)$ be the sequence defined as

$$Y_n = \left(\prod_{j=1}^n X_j\right)^{1/n}, \quad n \ge 1$$

- a) Show that there exists a constant $\mu > 0$ such that $Y_n \to \mu$ almost surely.
- b) Compute the value of μ in the case where $\mathbb{P}(\{X_1 = a\}) = \mathbb{P}(\{X_1 = b\}) = \frac{1}{2}$ and a, b > 0.
- c) In this case, look for a good upper bound on $\mathbb{P}(\{Y_n > t\})$ for $n \ge 1$ fixed and $t > \mu$.

Solution a) Consider

$$\log(Y_n) = \frac{1}{n} \sum_{j=1}^{n} \log(X_j)$$

As $\log(X_i)$ are i.i.d. bounded random variables, the strong law of large numbers applies, so

$$\frac{1}{n} \sum_{i=1}^{n} \log(X_i) \underset{n \to \infty}{\longrightarrow} \mathbb{E}(\log(X_1)) \quad \text{almost surely}$$

so $\mu = \exp(\mathbb{E}(\log(X_1)))$.

- b) In this case $\mathbb{E}(\log(X_1)) = \frac{\log(a) + \log(b)}{2}$, so $\mu = \sqrt{ab}$.
- c) Observing that $\log(X_j) \in [\log(a), \log(b)]$ and using (the generalized version of) Hoeffding's inequality, we obtain

$$\mathbb{P}(\{Y_n \ge t\}) = \mathbb{P}(\{\log(Y_n) - \log(\mu) \ge \log(t) - \log(\mu)\}) \le \exp\left(-\frac{2n(\log(t) - \log(\mu))^2}{(\log(b) - \log(a))^2}\right)$$

so $\mathbb{P}(\{Y_n \geq t\}) \leq C^n$ for every $t > \mu = \sqrt{ab}$, and a possible value for C is $\exp(-\frac{2(\log(t) - \log(\mu))^2}{(\log(b) - \log(a))^2})$ (note that the same result may be obtained by a direct computation and the use of the inequality $\cosh(x) \leq \exp(x^2/2)$).

And a weaker result can be obtained also via the inequality

$$\mathbb{P}(\{Y_n \ge t\}) \le \frac{\mathbb{E}(Y_n^n)}{t^n} = \left(\frac{\mathbb{E}(X_1)}{t}\right)^n = \left(\frac{a+b}{2t}\right)^n$$

which shows only that concentration holds for every $t > \frac{a+b}{2}$ (and not $t > \mu$).

Problem 2: Large deviations principle

Let $(X_n, n \ge 1)$ be a sequence of i.i.d. $\mathcal{E}(\lambda)$ random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., X_1 admits the following pdf:

$$p_{X_1}(x) = \begin{cases} \lambda \exp(-\lambda x) & x \ge 0\\ 0 & x < 0 \end{cases}$$

Let also $S_n = X_1 + \ldots + X_n$. Using the large deviations principle, find a tight upper bound on

$$\mathbb{P}(\{S_n \ge nt\}) \quad \text{for } t > \mathbb{E}(X_1) = \frac{1}{\lambda}$$

Solution We use the large deviations principle to find a tight upper bound. Before this, we need to check that the moment generating function $\mathbb{E}(e^{sX_1})$ is finite in a proper neighborhood of s=0:

$$\mathbb{E}(e^{sX_1}) = \int_0^\infty e^{sx} \, \lambda e^{-\lambda x} \, dx = \frac{\lambda}{\lambda - s}, \quad \text{for } s < \lambda$$

Therefore, by applying the large deviations principle, we obtain for $t > 1/\lambda$:

$$\mathbb{P}(\{S_n > nt\}) \le \exp(-n\Lambda^*(t)) \quad \text{where} \quad \Lambda^*(t) = \max_{s \in \mathbb{R}} \left\{ st - \log\left(\frac{\lambda}{\lambda - s}\right) \right\}$$

By taking the derivative of $st - \log\left(\frac{\lambda}{\lambda - s}\right)$ with respect to s and setting it equal to zero, we obtain that $\Lambda^*(t)$ is maximum at $s^* = \lambda - \frac{1}{t}$. Hence,

$$\mathbb{P}(\{S_n > nt\}) < \exp(-n\left(\lambda t - 1 - \log(\lambda t)\right))$$

Problem 3: Moment generating function

Recall that the moment-generating function of a random variable X is defined for every $t \in \mathbb{R}$ as

$$M_X(t) = \mathbb{E}\left(e^{tX}\right).$$

a) Show that if $X \sim \mathcal{N}(0, \sigma^2)$, then

$$M_X(t) = \exp\left(\frac{1}{2}t^2\sigma^2\right).$$

We now introduce the concept of sub-gaussianity. A random variable X is called sub-gaussian if, for every t > 0,

$$M_X(t) \le \exp\left(\frac{1}{2}t^2\eta^2\right)$$

for some $\eta \in \mathbb{R}^+$. (Note that η^2 need not be the variance of X!).

b) Show that if $X \sim \mathcal{U}([-a, a])$ for some a > 0, then X is sub-gaussian with $\eta = a$.

Hint: Recall that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

c) Show that if X is sub-gaussian for some $\eta \in \mathbb{R}^+$, then for every t > 0,

$$\mathbb{P}(|X| \ge t) \le 2 \exp\left(-\frac{t^2}{2\eta^2}\right).$$

d) Prove the following generalization of Hoeffding's inequality. Let $X_i, i \in \{1, 2, ..., n\}$ be independent random variables, where for each i, $X_i - \mathbb{E}(X_i)$ is sub-gaussian for some $\eta_i \in \mathbb{R}^+$. Let also $S_n = \sum_{i=1}^n X_i$. Show that for every t > 0,

$$\mathbb{P}(|S_n - \mathbb{E}(S_n)| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^n \eta_i^2}\right).$$

e) Let $X_i, i \in \{1, 2, ..., n\}$ be sub-gaussian random variables with the same $\eta \in \mathbb{R}^+$. Show that

$$\mathbb{E}\left(\max_{i} X_{i}\right) \leq \eta \sqrt{2 \ln n}.$$

Hint: Start by rewriting $\mathbb{E}(\max_i X_i) = \frac{1}{t} \mathbb{E}(\ln \exp(t \max_i X_i))$.

Solution

a) For $X \sim \mathcal{N}(0, \sigma^2)$ we have

$$\begin{split} M_X(t) &= \mathbb{E}(e^{tX}) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{+\infty} e^{tx} e^{-\frac{x^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{t^2\sigma^2}{2}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\sigma^2t)^2}{2\sigma^2}} dx \\ &= \exp\left(\frac{t^2\sigma^2}{2}\right). \end{split}$$

b) For $X \sim \mathcal{U}([-a, a])$ we have

$$M_X(t) = \mathbb{E}(e^{tX}) = \int_{-a}^{a} \frac{1}{2a} e^{tx} dx = \frac{1}{2at} (e^{ta} - e^{-ta}).$$

Now note that, using the Taylor expansion of e^x given in the hint, we can write

$$e^{ta} - e^{-ta} = \sum_{n=0}^{\infty} \frac{(ta)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-ta)^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{(ta)^{2n+1}}{(2n+1)!}$$
$$\le ta \sum_{n=0}^{\infty} \frac{(t^2a^2)^n}{2^n n!}$$
$$= ta \exp\left(\frac{t^2a^2}{2}\right)$$

where the inequality is due to the fact that $(2n+1)! \ge 2^n n!$, and the last equality is due to the Taylor expansion of $\exp\left(\frac{t^2 a^2}{2}\right)$. Hence, we conclude that

$$M_X(t) \le \frac{1}{2} \exp\left(\frac{t^2 a^2}{2}\right) \le \exp\left(\frac{t^2 a^2}{2}\right).$$

c) By the Chebyshev-Markov inequality with $\psi(x) = e^{sx}$, we have

$$\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}(e^{sX})}{e^{st}} \leq \exp\left(\frac{s^2\eta^2}{2} - st\right).$$

The optimal s (which can be found by taking the derivative of the right-hand side and putting it equal to 0) is $s = \frac{t}{n^2}$, which we can substitute into the equation to get

$$\mathbb{P}(X \ge t) \le \exp\left(\frac{t^2}{2\eta^2}\right).$$

The same upper-bound can be obtained similarly for $\mathbb{P}(X \leq -t)$, proving the result.

d) Note that, if Y_1 and Y_2 are two independent sub-gaussian random variables for some η_1 and η_2 , then Y_1+Y_2 is sub-gaussian with $\eta^2=\eta_1^2+\eta_2^2$. In fact,

$$M_{Y_1+Y_2}(t) = \mathbb{E}(e^{t(Y_1+Y_2)}) = \mathbb{E}(e^{tY_1})\mathbb{E}(e^{tY_2}) \leq \exp\left(\frac{t^2(\eta_1^2+\eta_2^2)}{2}\right).$$

One can apply this result recursively to prove the same property for the sum of n independent random variables. Then, the required result follows directly from part 3 with $X = \sum_{i=1}^{n} (X_i - \mathbb{E}(X_i))$.

e) Using the hint, we have

$$\mathbb{E}\left(\max_{i} X_{i}\right) = \frac{1}{t} \mathbb{E}\left(\ln \exp\left(t \max_{i} X_{i}\right)\right)$$

$$\leq \frac{1}{t} \ln \mathbb{E}\left(\exp\left(t \max_{i} X_{i}\right)\right)$$

$$= \frac{1}{t} \ln \mathbb{E}\left(\max_{i} \exp\left(t X_{i}\right)\right)$$

$$\leq \frac{1}{t} \ln \mathbb{E}\left(\sum_{i=1}^{n} \exp\left(t X_{i}\right)\right)$$

$$= \frac{1}{t} \ln \left(\sum_{i=1}^{n} \mathbb{E}(\exp(t X_{i}))\right)$$

$$\leq \frac{\ln n}{t} + \frac{\eta^{2} t}{2}$$

where the first inequality follows from Jensen's inequality, and the last one is due to the fact that the n random variables are sub-gaussian with the same η . The optimal t (obtained once again by putting the derivative equal to 0) is $t = \frac{\sqrt{2 \ln(n)}}{\eta}$. Substituing this value into the last equation gives

$$\mathbb{E}\left(\max_{i} X_{i}\right) \leq 2\eta \sqrt{\frac{\ln n}{2}} = \eta \sqrt{2 \ln n}.$$

Problem 4: Inequalities

Part I. Let $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables such that $\mathbb{P}(\{X_n = +1\}) = p$ and $\mathbb{P}(\{X_n = -1\}) = 1 - p$ for some fixed 0 .

Let
$$S_0 = 0$$
 and $S_n = X_1 + \ldots + X_n$, $n \ge 1$. Let also $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, $n \ge 1$.

Preliminary question. Deduce from Hoeffding's inequality that for any 0 ,

$$\mathbb{P}(\{|S_n - n(2p-1)| \ge nt\}) \le 2 \exp\left(-\frac{nt^2}{2}\right) \quad \forall t > 0, \ n \ge 1.$$

This inequality will be useful at some point in this exercise.

Let now $(Y_n, n \in \mathbb{N})$ be the process defined as $Y_n = \lambda^{S_n}$ for some $\lambda > 0$ and $n \in \mathbb{N}$.

- a) Using Jensen's inequality only, for what values of λ can you conclude that the process Y is a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$?
- b) Identify now the values of $\lambda > 0$ for which it holds that the process $(Y_n = \lambda^{S_n}, n \in \mathbb{N})$ is a martingale / submartingale / supermartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- c) Compute $\mathbb{E}(|Y_n|)$ and $\mathbb{E}(Y_n^2)$ for every $n \in \mathbb{N}$ (and every $\lambda > 0$).
- d) For what values of $\lambda > 0$ does it hold that $\sup_{n \in \mathbb{N}} \mathbb{E}(|Y_n|) < +\infty$? $\sup_{n \in \mathbb{N}} \mathbb{E}(Y_n^2) < +\infty$?
- e) Run the process Y numerically. For what values of $\lambda > 0$ do you observe that there exists a random variable Y_{∞} such that $Y_n \underset{n \to \infty}{\to} Y_{\infty}$ a.s.?

Prove it then theoretically and compute the random variable Y_{∞} when it exists (this computation might depend on λ , of course).

- f) For what values of $\lambda > 0$ does it hold that $Y_n \overset{L^2}{\underset{n \to \infty}{\to}} Y_{\infty}$?
- g) Finally, for what values of $\lambda > 0$ does it hold that $\mathbb{E}(Y_{\infty}|\mathcal{F}_n) = Y_n$, $\forall n \in \mathbb{N}$?

Part II. Consider now the (interesting) value λ for which the process Y is a martingale. (Spoiler: there is a unique such value of λ , and it is greater than 1.)

Let $a \geq 1$ be an integer and consider the stopping time $T_a = \inf\{n \in \mathbb{N} \,:\, Y_n \geq \lambda^a \quad \text{or} \quad Y_n \leq \lambda^{-a}\}$.

- a) Estimate numerically $\mathbb{P}(\{Y_{T_a} = \lambda^a\})$ for some values of a. Explain your method.
- b) Is it true that $\mathbb{E}(Y_{T_a}) = \mathbb{E}(Y_0)$? Justify your answer.
- c) If possible, use the previous statement to compute $P = \mathbb{P}(\{Y_{T_a} = \lambda^a\})$ theoretically. How fast does this probability decay with a?

Consider finally the other stopping time $T'_a = \inf\{n \in \mathbb{N} : Y_n \ge \lambda^a\}$.

- d) Estimate numerically $\mathbb{P}(\{Y_{T'_a} = \lambda^a\})$ for some values of a. Explain your method.
- e) Is it true that $\mathbb{E}(Y_{T'_a}) = \mathbb{E}(Y_0)$? Justify your answer.

f) If possible, use the above statement to compute $P' = \mathbb{P}(\{Y_{T'_a} = \lambda^a\})$ theoretically. Is this probability P' greater or smaller than P?

Solution a) As 0 , <math>S is a supermartingale. Also, $\lambda^x = e^{x \log(\lambda)}$ is a convex function $\forall \lambda > 0$, but is increasing for $\lambda \ge 1$ and decreasing for $\lambda \le 1$. Therefore, applying Jensen's inequality gives

$$\mathbb{E}(\lambda^{S_{n+1}} \mid \mathcal{F}_n) \ge \lambda^{\mathbb{E}(S_{n+1} \mid \mathcal{F}_n)} \ge \lambda^{S_n}$$

only when $\lambda \leq 1$.

b) We have

$$\mathbb{E}(\lambda^{S_{n+1}} \mid \mathcal{F}_n) = \lambda^{S_n} \, \mathbb{E}(\lambda^{X_{n+1}}) = \lambda^{S_n} \, (\lambda p + \frac{1}{\lambda} (1 - p))$$

which says that Y is a submartingale if and only if $E = \lambda p + \frac{1}{\lambda}(1-p) \ge 1$. Solving this (quadratic) inequation, we obtain the condition: $\lambda \in]-\infty,1] \cup [\frac{1-p}{p},+\infty[$. For the martingale condition to hold (E=1), it must be that either $\lambda=1$ (trivial case) or $\lambda=\frac{1-p}{p}$. Finally, Y is a supermartingale $(E\leq 1)$ if and only if $\lambda\in [1,\frac{1-p}{p}]$.

c) By independence, we have $\mathbb{E}(|Y_n|) = \mathbb{E}(Y_n) = \prod_{i=1}^n \mathbb{E}(\lambda^{X_i}) = (\lambda p + \frac{1}{\lambda}(1-p))^n$ and

$$\mathbb{E}(Y_n^2) = \prod_{j=1}^n \mathbb{E}(\lambda^{2X_j}) = (\lambda^2 p + \frac{1}{\lambda^2} (1-p))^n$$

d) Using the analysis done in question b), we obtain that

$$\sup_{n\in\mathbb{N}}\mathbb{E}(|Y_n|)<+\infty\quad\text{if and only if}\quad \lambda p+\frac{1}{\lambda}(1-p)\leq 1\quad\text{if and only if}\quad \lambda\in[1,\frac{1-p}{p}]$$

Likewise,

$$\sup_{n\in\mathbb{N}}\mathbb{E}(Y_n^2)<+\infty\quad\text{if and only if}\quad \lambda^2p+\frac{1}{\lambda^2}(1-p)\leq 1\quad\text{if and only if}\quad \lambda\in[1,\sqrt{\frac{1-p}{p}}]$$

as we simply need to replace λ by λ^2 here.

e) Numerically (see the code), we see clearly that $Y_n \equiv 1$ when $\lambda = 1$ and that $Y_n \underset{n \to \infty}{\to} 0$ a.s. for all $\lambda > 1$. Theoretically, this is due to the fact that $S_n \underset{n \to \infty}{\to} -\infty$ a.s. (one can use Hoeffding's inequality to justify this fact), so that $Y_n = \lambda^{S_n}$ converges a.s. to 0 when $\lambda > 1$ (even though Y is a submartingale for $\lambda > \frac{1-p}{p}$).

The martingale convergence theorem itself only allows to conclude that Y converges a.s. when $\lambda \in [1, \frac{1-p}{p}]$, i.e., when the first condition in question d) is satisfied.

- f) For the process Y to converge also in L^2 towards its limit, we need the second condition in part d) to hold, i.e., $\lambda \in [1, \sqrt{\frac{1-p}{p}}]$ (indeed, if this condition is not met, then $\mathbb{E}(Y_n^2)$ diverges, so no L^2 convergence can take place).
- g) The only value of λ for which the equality $\mathbb{E}(Y_{\infty}|\mathcal{F}_n) = Y_n$ is satisfied for all $n \in \mathbb{N}$ is the trivial case $\lambda = 1$. For all the other values of $\lambda \in [1, \sqrt{\frac{1-p}{p}}]$, Y is a supermartingale, which gives $\mathbb{E}(Y_{\infty}|\mathcal{F}_n) \leq Y_n$ for all $n \in \mathbb{N}$. But in this case, we already know that $Y_{\infty} = 0$, so what the above inequality is actually saying is that $0 \leq Y_n$, i.e., not much...

Part II. We consider the case $\lambda = \frac{1-p}{p} (> 1)$.

- a) Method: observe first that $T_a = \inf\{n \in \mathbb{N} : S_n \geq a \text{ or } S_n \leq -a\}$. Run then M = 1'000 times the process S for N = 1'000 time steps; count the number of times m the barrier a is reached before -a (see the code for the implementation). The probability $P = \mathbb{P}(\{Y_{T_a} = \lambda^a\})$ is then approximately given by m/M (there are of course fluctuations here).
- b) It is true that $\mathbb{E}(Y_{T_a}) = \mathbb{E}(Y_0)$. The third version of the optional stopping theorem allows to say this, as the martingale Y makes bounded jumps and is contained in the interval $[\lambda^{-a}, \lambda^a]$ before the stopping time T_a .
- c) As the martingale convergence theorem applies, we obtain

$$1 = \mathbb{E}(Y_0) = \mathbb{E}(Y_{T_a}) = \lambda^a P + \lambda^{-a} (1 - P)$$

so

$$P = \frac{1 - \lambda^{-a}}{\lambda^{a} - \lambda^{-a}} = \frac{\lambda^{a} - 1}{\lambda^{2a} - 1} = \frac{1}{\lambda^{a} + 1}$$

This probability decays exponentially in a.

- d) Method: Run again M=1'000 times the process S for N=1'000 time steps; count the number of times m the barrier a is reached at all (see the code for the implementation). The probability $P'=\mathbb{P}(\{Y_{T'_a}=\lambda^a\})$ is then approximately given by m/M (there are of course also fluctuations here).
- e) It is also true that $\mathbb{E}(Y_{T'_a}) = \mathbb{E}(Y_0)$! The third version of the optional stopping theorem allows to say this, as the martingale Y makes bounded jumps and is contained in the interval $[0, \lambda^a]$ before the stopping time T'_a (even though the process S itself is unbounded).
- f) As the martingale convergence theorem applies, we obtain

$$1 = \mathbb{E}(Y_0) = \mathbb{E}(Y_{T'}) = \lambda^a P' + 0 (1 - P')$$

[Comment: if level a is not reached, this is saying that the process S goes to $-\infty$ and never comes back to level a; of course, this can only happen with positive probability when S is a (strict) supermartingale with a negative drift.] Therefore,

$$P' = \frac{1}{\lambda^a}$$

which is strictly greater than P, but decays also exponentially in a.