Problem Set 14

Problem 1: Convergence and inequalities

Let $(X_n, n \ge 1)$ be a sequence of i.i.d. non-negative random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such that there exists $0 < a < b < +\infty$ with $a < X_n(\omega) \le b$ for all $n \ge 1$ and $\omega \in \Omega$. Let also $(Y_n, n \ge 1)$ be the sequence defined as

$$Y_n = \left(\prod_{j=1}^n X_j\right)^{1/n}, \quad n \ge 1$$

- a) Show that there exists a constant $\mu > 0$ such that $Y_n \underset{n \to \infty}{\to} \mu$ almost surely.
- b) Compute the value of μ in the case where $\mathbb{P}(\{X_1=a\})=\mathbb{P}(\{X_1=b\})=\frac{1}{2}$ and a,b>0.
- c) In this case, look for a good upper bound on $\mathbb{P}(\{Y_n > t\})$ for $n \ge 1$ fixed and $t > \mu$.

Problem 2: Large deviations principle

Let $(X_n, n \ge 1)$ be a sequence of i.i.d. $\mathcal{E}(\lambda)$ random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., X_1 admits the following pdf:

$$p_{X_1}(x) = \begin{cases} \lambda \exp(-\lambda x) & x \ge 0\\ 0 & x < 0 \end{cases}$$

Let also $S_n = X_1 + \ldots + X_n$. Using the large deviations principle, find a tight upper bound on

$$\mathbb{P}(\{S_n \ge nt\}) \quad \text{for } t > \mathbb{E}(X_1) = \frac{1}{\lambda}$$

Problem 3: Moment generating function

Recall that the moment-generating function of a random variable X is defined for every $t \in \mathbb{R}$ as

$$M_X(t) = \mathbb{E}\left(e^{tX}\right).$$

a) Show that if $X \sim \mathcal{N}(0, \sigma^2)$, then

$$M_X(t) = \exp\left(\frac{1}{2}t^2\sigma^2\right).$$

We now introduce the concept of *sub-gaussianity*. A random variable X is called sub-gaussian if, for every t > 0,

$$M_X(t) \le \exp\left(\frac{1}{2}t^2\eta^2\right)$$

for some $\eta \in \mathbb{R}^+$. (Note that η^2 need not be the variance of X!).

- **b)** Show that if $X \sim \mathcal{U}([-a,a])$ for some a > 0, then X is sub-gaussian with $\eta = a$. Hint: Recall that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- c) Show that if X is sub-gaussian for some $\eta \in \mathbb{R}^+$, then for every t > 0,

$$\mathbb{P}(|X| \ge t) \le 2 \exp\left(-\frac{t^2}{2\eta^2}\right).$$

d) Prove the following generalization of Hoeffding's inequality. Let $X_i, i \in \{1, 2, ..., n\}$ be independent random variables, where for each i, $X_i - \mathbb{E}(X_i)$ is sub-gaussian for some $\eta_i \in \mathbb{R}^+$. Let also $S_n = \sum_{i=1}^n X_i$. Show that for every t > 0,

$$\mathbb{P}(|S_n - \mathbb{E}(S_n)| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^n \eta_i^2}\right).$$

e) Let $X_i, i \in \{1, 2, ..., n\}$ be sub-gaussian random variables with the same $\eta \in \mathbb{R}^+$. Show that

$$\mathbb{E}\left(\max_{i} X_{i}\right) \leq \eta \sqrt{2 \ln n}.$$

Hint: Start by rewriting $\mathbb{E}(\max_i X_i) = \frac{1}{t} \mathbb{E}(\ln \exp(t \max_i X_i))$.

Problem 4: Inequalities

Part I. Let $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables such that $\mathbb{P}(\{X_n = +1\}) = p$ and $\mathbb{P}(\{X_n = -1\}) = 1 - p$ for some fixed 0 .

Let
$$S_0 = 0$$
 and $S_n = X_1 + \ldots + X_n$, $n \ge 1$. Let also $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, $n \ge 1$.

Preliminary question. Deduce from Hoeffding's inequality that for any 0 ,

$$\mathbb{P}(\{|S_n - n(2p-1)| \ge nt\}) \le 2 \exp\left(-\frac{nt^2}{2}\right) \quad \forall t > 0, \ n \ge 1.$$

This inequality will be useful at some point in this exercise.

Let now $(Y_n, n \in \mathbb{N})$ be the process defined as $Y_n = \lambda^{S_n}$ for some $\lambda > 0$ and $n \in \mathbb{N}$.

- a) Using Jensen's inequality only, for what values of λ can you conclude that the process Y is a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$?
- b) Identify now the values of $\lambda > 0$ for which it holds that the process $(Y_n = \lambda^{S_n}, n \in \mathbb{N})$ is a martingale / submartingale / supermartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

- c) Compute $\mathbb{E}(|Y_n|)$ and $\mathbb{E}(Y_n^2)$ for every $n \in \mathbb{N}$ (and every $\lambda > 0$).
- d) For what values of $\lambda > 0$ does it hold that $\sup_{n \in \mathbb{N}} \mathbb{E}(|Y_n|) < +\infty$? $\sup_{n \in \mathbb{N}} \mathbb{E}(Y_n^2) < +\infty$?
- e) Run the process Y numerically. For what values of $\lambda > 0$ do you observe that there exists a random variable Y_{∞} such that $Y_n \xrightarrow[n \to \infty]{} Y_{\infty}$ a.s.?

Prove it then theoretically and compute the random variable Y_{∞} when it exists (this computation might depend on λ , of course).

- f) For what values of $\lambda > 0$ does it hold that $Y_n \stackrel{L^2}{\underset{n \to \infty}{\longrightarrow}} Y_\infty$?
- g) Finally, for what values of $\lambda > 0$ does it hold that $\mathbb{E}(Y_{\infty}|\mathcal{F}_n) = Y_n$, $\forall n \in \mathbb{N}$?

Part II. Consider now the (interesting) value λ for which the process Y is a martingale. (Spoiler: there is a unique such value of λ , and it is greater than 1.)

Let $a \geq 1$ be an integer and consider the stopping time $T_a = \inf\{n \in \mathbb{N} \,:\, Y_n \geq \lambda^a \quad \text{or} \quad Y_n \leq \lambda^{-a}\}$.

- a) Estimate numerically $\mathbb{P}(\{Y_{T_a} = \lambda^a\})$ for some values of a. Explain your method.
- b) Is it true that $\mathbb{E}(Y_{T_a}) = \mathbb{E}(Y_0)$? Justify your answer.
- c) If possible, use the previous statement to compute $P = \mathbb{P}(\{Y_{T_a} = \lambda^a\})$ theoretically. How fast does this probability decay with a?

Consider finally the other stopping time $\,T_a'=\inf\{n\in\mathbb{N}\,:\,Y_n\geq\lambda^a\}\,.$

- d) Estimate numerically $\mathbb{P}(\{Y_{T_a'} = \lambda^a\})$ for some values of a. Explain your method.
- e) Is it true that $\mathbb{E}(Y_{T'_{a}}) = \mathbb{E}(Y_{0})$? Justify your answer.
- f) If possible, use the above statement to compute $P' = \mathbb{P}(\{Y_{T'_a} = \lambda^a\})$ theoretically. Is this probability P' greater or smaller than P?