Problem Set 13

Problem 1: Optional stopping theorem

Let $(S_n, n \in \mathbb{N})$ be the simple symmetric random walk, $(\mathcal{F}_n, n \in \mathbb{N})$ be its natural filtration and

$$T = \inf\{n \ge 1 : S_n \ge a \quad \text{or} \quad S_n \le -b\},\,$$

where a, b are positive integers.

- a) Show that T is a stopping time with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- b) Use the optional stopping theorem to compute $\mathbb{P}(\{S_T = a\})$.

Let now $(M_n, n \in \mathbb{N})$ be defined as $M_n = S_n^2 - n$, for all $n \in \mathbb{N}$.

- c) Show that the process $(M_n, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- d) Apply the optional stopping theorem to compute $\mathbb{E}(T)$.

Remark: Even though T is an unbounded stopping time, the optional stopping theorem applies both in parts b) and d). Notice that the theorem would not apply if one would consider the stopping time: $T' = \inf\{n \ge 1 : S_n \ge a\}$.

Problem 2: Martingale convergence

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{G} be a sub- σ -field of \mathcal{F} . Let $U \sim \mathcal{U}([-1, +1])$ be a random variable independent of \mathcal{G} and M be a positive, integrable and \mathcal{G} -measurable random variable.

a) Compute the function $\psi: \mathbb{R}_+ \to \mathbb{R}$ satisfying

$$\psi(M) = \mathbb{E}(|M + U| \mid \mathcal{G})$$

Let now $(U_n, n \ge 1)$ be a sequence of i.i.d. $\sim \mathcal{U}([-1, +1])$ random variables, all defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(U_1, \dots, U_n)$, $n \ge 1$. Let finally $(M_n, n \ge 1)$ be the process defined recursively

$$M_0 = 0$$
, $M_{n+1} = |M_n + U_{n+1}|$, $n \in \mathbb{N}$

- b) Show that the process $(M_n, n \in \mathbb{N})$ is a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- c) Compute the unique predictable and increasing process $(A_n, n \in \mathbb{N})$ such that the process $(M_n A_n, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- d) Is it true that the process $(M_n^2, n \in \mathbb{N})$ is also a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? Justify your answer.
- e) Determine the value of c > 0 such that the process $(N_n = M_n^2 cn, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- f) Does there exist a random variable M_{∞} such that $M_n \underset{n \to \infty}{\to} M_{\infty}$ almost surely? (Again, no formal justification required here; an intuitive argument will do.)

Problem 3: Recursive martingale convergence

Let $0 and <math>M = (M_n, n \in \mathbb{N})$ be the process defined recursively as

$$M_0=x\in]0,1[,\quad M_{n+1}=\begin{cases} p\,M_n, & \text{with probability }1-M_n\\\\ (1-p)+pM_n, & \text{with probability }M_n \end{cases}$$

and $(\mathcal{F}_n, n \in \mathbb{N})$ be the filtration defined as $\mathcal{F}_n = \sigma(M_0, \dots, M_n), n \in \mathbb{N}$.

- a) For what value(s) of 0 is the process <math>M is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? Justify your answer.
- b) In the case(s) M is a martingale, compute $\mathbb{E}(M_{n+1}(1-M_{n+1})|\mathcal{F}_n)$ for $n \in \mathbb{N}$.
- c) Deduce the value of $\mathbb{E}(M_n (1 M_n))$ for $n \in \mathbb{N}$.
- d) Does there exist a random variable M_{∞} such that

(i)
$$M_n \underset{n \to \infty}{\to} M_\infty$$
 a.s. ? (ii) $M_n \underset{n \to \infty}{\overset{L^2}{\to}} M_\infty$? (iii) $\mathbb{E}(M_\infty | \mathcal{F}_n) = M_n, \forall n \in \mathbb{N}$?

e) What can you say more about M_{∞} ? (No formal justification required here; an intuitive argument will do.)