Problem Set 12

Problem 1: Increasing martingale

- a) Let $(M_n, n \in \mathbb{N})$ be an *increasing* martingale, that is, $M_{n+1} \geq M_n$ a.s. for all $n \in \mathbb{N}$. Show that $M_n = M_0$ a.s., for all $n \in \mathbb{N}$.
- b) Let $(M_n, n \in \mathbb{N})$ be a square-integrable martingale such that $(M_n^2, n \in \mathbb{N})$ is also a martingale. Show that $M_n = M_0$ a.s., for all $n \in \mathbb{N}$.

Problem 2: Recursive martingale

Let 0 and <math>x > 0 be fixed real numbers and $(X_n, n \in \mathbb{N})$ be the process defined recursively as

$$X_0 = x, \quad X_{n+1} = \begin{cases} X_n^2 + 1 & \text{with probability } p \\ X_n/2 & \text{with probability } 1 - p \end{cases}$$
 for $n \in \mathbb{N}$

a) What minimal condition on 0 guarantees that the process <math>X is a submartingale (with respect to its natural filtration)? Justify your answer.

Hint: The inequality $a^2 + b^2 \ge 2ab$ may be useful here.

- b) For the values of p respecting the condition found in part a), derive a lower bound on $\mathbb{E}(X_n)$.
- Hint: Proceed recursively.
- c) Does there exist a value of 0 such that the process X is a martingale? a supermartingale? Again, justify your answer.

Problem 3: Martingale transform

Let $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables such that $\mathbb{P}(\{X_1 = +1\}) = \mathbb{P}(\{X_1 = -1\}) = \frac{1}{2}$. Let also $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ for $n \ge 1$ and let $(H_n, n \in \mathbb{N})$ be a predictable process with respect to $(\mathcal{F}_n, n \in \mathbb{N})$ such that for every $n \in \mathbb{N}$, $\exists K_n > 0$ with $|H_n(\omega)| \le K_n$ for all $\omega \in \Omega$. Let finally

$$G_0 = 0$$
 and $G_n = \sum_{j=1}^{n} H_j X_j$, $n \ge 1$.

From the course, we know that the process G is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

- a) Under the assumptions made, is it possible that $\mathbb{E}(H_iX_i) > 0$ for some j? Explain!
- b) Find the unique predictable and increasing process $(A_n, n \in \mathbb{N})$ such that the process $(G_n^2 A_n, n \in \mathbb{N})$ is also a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

From now on, consider the particular case where $H_n(\omega) \in \{-1, +1\}$ for every $n \in \mathbb{N}$ and $\omega \in \Omega$.

- c) Compute the process A in this particular case.
- d) Let $a \ge 1$ be an integer and let $T = \inf\{n \ge 1 : |G_n| \ge a\}$. Compute $\mathbb{E}(T)$ [no full justification required here].