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Exercise Sheet 14 – Solutions

Exercise 1 (Properties of line integrals): Let M be a smooth manifold with or with-
out boundary. Let γ : [a, b] → M be a piecewise smooth curve segment in M , and let
ω, ω1, ω2 ∈ X∗(M). Prove the following assertions:

(a) For any c1, c2 ∈ R we have∫
γ

(
c1ω1 + c2ω2

)
= c1

∫
γ

ω1 + c2

∫
γ

ω2.

(b) If γ is a constant map, then ∫
γ

ω = 0.

(c) If γ1 := γ|[a,c] and γ2 := γ|[c,b], where a, b, c ∈ R with a < c < b, then∫
γ

ω =

∫
γ1

ω +

∫
γ2

ω.

(d) If F : M → N is any smooth map and if η ∈ X∗(N), then∫
γ

F ∗η =

∫
F◦γ

η.

Solution:

(a) Follows immediately from the corresponding property of usual integrals.

(b) Since γ is constant, for any p ∈ [a, b] we have dγp = 0, and thus

(γ∗ω)p (v) = ωγ(p)

(
dγp(v)

)
= 0 for any v ∈ Tp [a, b],

which implies that γ∗ω = 0. Therefore,∫
γ

ω =

∫
[a,b]

γ∗ω = 0.
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(c) Follows immediately from the corresponding property of usual integrals.

(d) By Remark 8.17 we deduce that∫
γ

F ∗η =

∫
[a,b]

γ∗(F ∗η
)
=

∫
[a,b]

(F ◦ γ)∗η =

∫
F◦γ

η.

Exercise 2 (Parameter independence of line integrals): Let M be a smooth manifold
with or without boundary, ω ∈ X∗(M), and let γ be a piecewise smooth curve segment in
M . Show that for any reparametrization γ̃ of γ we have

∫
γ̃

ω =


∫
γ

ω if γ̃ is a forward reparametrization,

−
∫
γ

ω if γ̃ is a backward reparametrization.

Solution: Let φ : [c, d] → [a, b] be the strictly monotone, piecewise smooth function such
that γ̃ = γ ◦ φ. Let a = a0 < a1 < · · · < ak = b be a partition of [a, b] such that both
γ|[ai−1,ai] and φ−1|[ai−1,ai] are smooth for all 1 ≤ i ≤ k. Set ci = φ−1(ai) for each 1 ≤ i ≤ k.
Then γ̃|[ci−1,ci] is smooth for all 1 ≤ i ≤ k by construction. Hence, we have∫

γ̃

ω =
k∑

i=1

∫
[ci−1,ci]

γ̃∗ω =
k∑

i=1

∫
[ci−1,ci]

φ∗γ∗ω.

Let ε ∈ {−1, 1} be equal to 1 if φ is increasing, and equal to −1 if φ is decreasing. Note
that if φ is increasing (resp. decreasing), then for all i the restriction φ|[ci−1,ci] : [ci−1, ci] →
[ai−1, ai] is an increasing (resp. decreasing) diffeomorphism. Hence, by Lemma 11.6 we
obtain ∫

γ̃

ω =
k∑

i=1

ε

∫
[ai−1,ai]

γ∗ω = ε

∫
γ

ω,

which is what we wanted to prove.

Exercise 3: Let M be a compact, connected, oriented, smooth n-manifold without
boundary (i.e., ∂M = ∅), where n ≥ 1, and let ω ∈ Ωn−1(M). Show that there ex-
ists a point p ∈ M such that (dω)p = 0 ∈ Λn(T ∗

pM).

Solution: Assume on the contrary that dω ∈ Ωn(M) is an orientation form on M . Since
M is connected, dω must be either positively or negatively oriented, and hence∫

M

dω ̸= 0

by Proposition 11.20. On the other hand, Stokes’ theorem, together with the fact that
∂M = ∅, yield ∫

M

dω =

∫
∂M

ω = 0.

This contradiction shows that there is a point p ∈ M such that (dω)p = 0 ∈ Λn(T ∗
pM).

2



Exercise 4:

(a) Let M be a smooth n-manifold (without boundary) and let ω ∈ Ω1(M).

(i) Let
(
U, (xi)

)
be a smooth coordinate chart for M , and write ω|U =

∑n
i=1 ωi dx

i

in this chart. Find an expression for the exterior derivative dω ∈ Ω2(M) of ω in
this chart (that is, an expression of dω in terms of the natural basis induced in
each fiber of Λ2(T ∗M) by the given chart).

(ii) Deduce that ω is closed if and only if for every point p ∈ M there exists a
smooth coordinate chart

(
U, (xi)

)
such that p ∈ U and

∂ωj

∂xi
=

∂ωi

∂xj
for all 1 ≤ i, j ≤ n,

where ω|U =
∑n

i=1 ωi dx
i in this chart.

(b) Consider the smooth 1-forms

ω = y cos(xy) dx+ x cos(xy) dy ∈ Ω1(R2)

and
η = x cos(xy) dx+ y cos(xy) dy ∈ Ω1(R2).

(i) Show that ω is closed and exact.

(ii) Show that η is neither closed nor exact.

(iii) Compute ω ∧ η.

(c) Evaluate the line integral ∫
γ

ω,

where γ is the straight line segment from (0, 0) to (
√
π,

√
π).

Solution:

(a)(i) By definition of the exterior derivative, we have

dω =
n∑

i=1

dωi ∧ dxi,

and since

dωi =
n∑

j=1

∂ωi

∂ωj

dxj for every 1 ≤ i ≤ n,

we obtain

dω =
∑
i

(∑
j

∂ωi

∂ωj

dxj

)
∧ dxi =

∑
i,j

∂ωi

∂ωj

dxj ∧ dxi

=
∑
j<i

∂ωi

∂ωj

dxj ∧ dxi +
∑
j=i

∂ωi

∂ωj

dxj ∧ dxi︸ ︷︷ ︸
=0

+
∑
j>i

∂ωi

∂ωj

dxj ∧ dxi︸ ︷︷ ︸
=−dxi∧dxj

=
∑
j<i

(
∂ωi

∂xj
− ∂ωj

∂xi

)
dxj ∧ dxi.
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(a)(ii) Assume first that ω is closed, and let
(
U, (xi)

)
be an arbitrary smooth chart for

M . By the above computation we have

0 = dω|U =
∑
j<i

(
∂ωi

∂xj
− ∂ωj

∂xi

)
dxj ∧ dxi,

and since {dxj ∧ dxi}j<i gives a basis in each fiber of Λ2(T ∗M), we have

∂ωi

∂xj
=

∂ωj

∂xi

for all j < i. By symmetry, the equation holds in fact for all i, j, so we deduce the forward
direction.

For the reverse direction, let p ∈ M be arbitrary and let
(
U, (xi)

)
be a smooth chart

around p ∈ M such that on U we have

∂ωj

∂xi
=

∂ωi

∂xj
for all 1 ≤ i, j ≤ n.

By part (a)(i), we obtain

dω =
∑
j<i

(
∂ωi

∂xj
− ∂ωj

∂xi

)
︸ ︷︷ ︸

=0

dxj ∧ dxi = 0,

and thus dωp = 0. As p ∈ M was arbitrary, we conclude that dω = 0, so ω is closed.

(b)(i) Consider the function

f : R2 → R, (x, y) 7→ sin(xy)

and observe that df = ω; in other words, ω is exact. Hence, ω is closed. (This can also
be verified with a direct computation).

(b)(ii) We have

dη = d
(
x cos(xy)

)
∧ dx+ d

(
y cos(xy)

)
∧ dy

=
((

cos(xy)− xy sin(xy)
)
dx+

(
−x2 sin(xy)

)
dy
)
∧ dx +

+
(
−y2 sin(xy) dx+

(
cos(xy)− xy sin(xy)

)
dy
)
∧ dy

= −x2 sin(xy) dy ∧ dx− y2 sin(xy) dx ∧ dy

= (x2 − y2) sin(xy) dx ∧ dy,

which does not vanish identically on R2. Therefore, η is not closed (see also part (a)(ii)),
and thus η cannot be exact either.

(b)(iii) We compute that

ω ∧ η =
(
y cos(xy) dx+ x cos(xy) dy

)
∧
(
x cos(xy) dx+ y cos(xy) dy

)
= y2 cos2(xy) dx ∧ dy + x2 cos2(xy) dy ∧ dx

= (y2 − x2) cos2(xy) dx ∧ dy.
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(c) The straight line segment from (0, 0) to (
√
π,

√
π) can be parametrized by the smooth

curve segment
γ :
[
0,
√
π
]
→ R2, t 7→ (t, t).

Since ω = df is exact, by the fundamental theorem of line integrals we obtain∫
γ

ω =

∫
γ

df = (f ◦ γ)
(√

π
)
− (f ◦ γ)(0)

= sin(π)− sin(0) = 0.

Exercise 5: Consider the covector field ω ∈ X∗(R3) given by

ω = ey
2

dx+ 2xyey
2

dy − 2z dz.

(a) Verify by direct computation that ω is closed.

(b) Using the fact that ω ∈ X∗(R3) is exact on the star-shaped set R3 (which follows
from Poincaré’s lemma), find a potential for ω, i.e., a function f ∈ C∞(R3) such that
ω = df .

(c) Compute the line integral of ω along the smooth curve segment γ : [0, 1] → R3, t 7→
(t, t2, t3).

Solution:

(a) We have

dω =
(
2yey

2)
dy ∧ dx+

(
2yey

2

dx+
(
2xey

2

+ 4xy2ey
2)
dy
)
∧ dy − 2 dz ∧ dz

= −
(
2yey

2)
dx ∧ dy +

(
2yey

2)
dx ∧ dy

= 0.

(b) For f ∈ C∞(R3) to be a potential for ω, it must satisfy

∂f

∂x
= ey

2

,
∂f

∂y
= 2xyey

2

,
∂f

∂z
= −2z. (1)

Holding y and z fixed and integrating the first equation of (1) with respect to x, we obtain

f(x, y, z) =

∫
ey

2

dx = xey
2

+ C1(y, z),

where the “constant” of integration C1(y, z) may depend on the choice of (y, z). Now, the
second equation of (1) implies

2xyey
2

=
∂

∂y

(
xey

2

+ C1(y, z)
)
= 2xyey

2

+
∂C1

∂y
(y, z),

which forces ∂C1

∂y
= 0, so C1 is actually a function of z only. Finally, the third equation of

(1) yields

−2z =
∂

∂z

(
xey

2

+ C1(z)
)
=

dC1

dz
(z),
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which implies that C1(z) = −z2 + c, where c ∈ R is an arbitrary constant. Hence, a
potential function for ω is given by

f : R3 → R, f(x, y, z) = xey
2 − z2.

Any other potential differs from this one by a constant.

(c) Since ω = df is exact, by the fundamental theorem of line integrals we obtain∫
γ

ω =

∫
γ

df = (f ◦ γ)(1)− (f ◦ γ)(0)

= f(1, 1, 1)− f(0, 0, 0) = e− 1.
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