

Differential Geometry II - Smooth Manifolds

Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

Exercise Sheet 14 – Solutions

Exercise 1 (Properties of line integrals): Let M be a smooth manifold with or without boundary. Let $\gamma: [a, b] \rightarrow M$ be a piecewise smooth curve segment in M , and let $\omega, \omega_1, \omega_2 \in \mathfrak{X}^*(M)$. Prove the following assertions:

(a) For any $c_1, c_2 \in \mathbb{R}$ we have

$$\int_{\gamma} (c_1 \omega_1 + c_2 \omega_2) = c_1 \int_{\gamma} \omega_1 + c_2 \int_{\gamma} \omega_2.$$

(b) If γ is a constant map, then

$$\int_{\gamma} \omega = 0.$$

(c) If $\gamma_1 := \gamma|_{[a,c]}$ and $\gamma_2 := \gamma|_{[c,b]}$, where $a, b, c \in \mathbb{R}$ with $a < c < b$, then

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega.$$

(d) If $F: M \rightarrow N$ is any smooth map and if $\eta \in \mathfrak{X}^*(N)$, then

$$\int_{\gamma} F^* \eta = \int_{F \circ \gamma} \eta.$$

Solution:

(a) Follows immediately from the corresponding property of usual integrals.

(b) Since γ is constant, for any $p \in [a, b]$ we have $d\gamma_p = 0$, and thus

$$(\gamma^* \omega)_p(v) = \omega_{\gamma(p)}(d\gamma_p(v)) = 0 \quad \text{for any } v \in T_p [a, b],$$

which implies that $\gamma^* \omega = 0$. Therefore,

$$\int_{\gamma} \omega = \int_{[a,b]} \gamma^* \omega = 0.$$

(c) Follows immediately from the corresponding property of usual integrals.

(d) By *Remark 8.17* we deduce that

$$\int_{\gamma} F^* \eta = \int_{[a,b]} \gamma^*(F^* \eta) = \int_{[a,b]} (F \circ \gamma)^* \eta = \int_{F \circ \gamma} \eta.$$

Exercise 2 (*Parameter independence of line integrals*): Let M be a smooth manifold with or without boundary, $\omega \in \mathfrak{X}^*(M)$, and let γ be a piecewise smooth curve segment in M . Show that for any reparametrization $\tilde{\gamma}$ of γ we have

$$\int_{\tilde{\gamma}} \omega = \begin{cases} \int_{\gamma} \omega & \text{if } \tilde{\gamma} \text{ is a forward reparametrization,} \\ - \int_{\gamma} \omega & \text{if } \tilde{\gamma} \text{ is a backward reparametrization.} \end{cases}$$

Solution: Let $\varphi: [c, d] \rightarrow [a, b]$ be the strictly monotone, piecewise smooth function such that $\tilde{\gamma} = \gamma \circ \varphi$. Let $a = a_0 < a_1 < \dots < a_k = b$ be a partition of $[a, b]$ such that both $\gamma|_{[a_{i-1}, a_i]}$ and $\varphi^{-1}|_{[a_{i-1}, a_i]}$ are smooth for all $1 \leq i \leq k$. Set $c_i = \varphi^{-1}(a_i)$ for each $1 \leq i \leq k$. Then $\tilde{\gamma}|_{[c_{i-1}, c_i]}$ is smooth for all $1 \leq i \leq k$ by construction. Hence, we have

$$\int_{\tilde{\gamma}} \omega = \sum_{i=1}^k \int_{[c_{i-1}, c_i]} \tilde{\gamma}^* \omega = \sum_{i=1}^k \int_{[c_{i-1}, c_i]} \varphi^* \gamma^* \omega.$$

Let $\varepsilon \in \{-1, 1\}$ be equal to 1 if φ is increasing, and equal to -1 if φ is decreasing. Note that if φ is increasing (resp. decreasing), then for all i the restriction $\varphi|_{[c_{i-1}, c_i]}: [c_{i-1}, c_i] \rightarrow [a_{i-1}, a_i]$ is an increasing (resp. decreasing) diffeomorphism. Hence, by *Lemma 11.6* we obtain

$$\int_{\tilde{\gamma}} \omega = \sum_{i=1}^k \varepsilon \int_{[a_{i-1}, a_i]} \gamma^* \omega = \varepsilon \int_{\gamma} \omega,$$

which is what we wanted to prove.

Exercise 3: Let M be a compact, connected, oriented, smooth n -manifold without boundary (i.e., $\partial M = \emptyset$), where $n \geq 1$, and let $\omega \in \Omega^{n-1}(M)$. Show that there exists a point $p \in M$ such that $(d\omega)_p = 0 \in \Lambda^n(T_p^* M)$.

Solution: Assume on the contrary that $d\omega \in \Omega^n(M)$ is an orientation form on M . Since M is connected, $d\omega$ must be either positively or negatively oriented, and hence

$$\int_M d\omega \neq 0$$

by *Proposition 11.20*. On the other hand, Stokes' theorem, together with the fact that $\partial M = \emptyset$, yield

$$\int_M d\omega = \int_{\partial M} \omega = 0.$$

This contradiction shows that there is a point $p \in M$ such that $(d\omega)_p = 0 \in \Lambda^n(T_p^* M)$.

Exercise 4:

(a) Let M be a smooth n -manifold (without boundary) and let $\omega \in \Omega^1(M)$.

- (i) Let $(U, (x^i))$ be a smooth coordinate chart for M , and write $\omega|_U = \sum_{i=1}^n \omega_i dx^i$ in this chart. Find an expression for the *exterior derivative* $d\omega \in \Omega^2(M)$ of ω in this chart (that is, an expression of $d\omega$ in terms of the natural basis induced in each fiber of $\Lambda^2(T^*M)$ by the given chart).
- (ii) Deduce that ω is closed if and only if for every point $p \in M$ there exists a smooth coordinate chart $(U, (x^i))$ such that $p \in U$ and

$$\frac{\partial \omega_j}{\partial x^i} = \frac{\partial \omega_i}{\partial x^j} \text{ for all } 1 \leq i, j \leq n,$$

where $\omega|_U = \sum_{i=1}^n \omega_i dx^i$ in this chart.

(b) Consider the smooth 1-forms

$$\omega = y \cos(xy) dx + x \cos(xy) dy \in \Omega^1(\mathbb{R}^2)$$

and

$$\eta = x \cos(xy) dx + y \cos(xy) dy \in \Omega^1(\mathbb{R}^2).$$

- (i) Show that ω is closed and exact.
- (ii) Show that η is neither closed nor exact.
- (iii) Compute $\omega \wedge \eta$.

(c) Evaluate the line integral

$$\int_{\gamma} \omega,$$

where γ is the straight line segment from $(0, 0)$ to $(\sqrt{\pi}, \sqrt{\pi})$.

Solution:

(a)(i) By definition of the exterior derivative, we have

$$d\omega = \sum_{i=1}^n d\omega_i \wedge dx^i,$$

and since

$$d\omega_i = \sum_{j=1}^n \frac{\partial \omega_i}{\partial \omega_j} dx^j \text{ for every } 1 \leq i \leq n,$$

we obtain

$$\begin{aligned} d\omega &= \sum_i \left(\sum_j \frac{\partial \omega_i}{\partial \omega_j} dx^j \right) \wedge dx^i = \sum_{i,j} \frac{\partial \omega_i}{\partial \omega_j} dx^j \wedge dx^i \\ &= \sum_{j < i} \frac{\partial \omega_i}{\partial \omega_j} dx^j \wedge dx^i + \sum_{j=i} \frac{\partial \omega_i}{\partial \omega_j} \underbrace{dx^j \wedge dx^i}_{=0} + \sum_{j > i} \frac{\partial \omega_i}{\partial \omega_j} \underbrace{dx^j \wedge dx^i}_{=-dx^i \wedge dx^j} \\ &= \sum_{j < i} \left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right) dx^j \wedge dx^i. \end{aligned}$$

(a)(ii) Assume first that ω is closed, and let $(U, (x^i))$ be an arbitrary smooth chart for M . By the above computation we have

$$0 = d\omega|_U = \sum_{j < i} \left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right) dx^j \wedge dx^i,$$

and since $\{dx^j \wedge dx^i\}_{j < i}$ gives a basis in each fiber of $\Lambda^2(T^*M)$, we have

$$\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$$

for all $j < i$. By symmetry, the equation holds in fact for all i, j , so we deduce the forward direction.

For the reverse direction, let $p \in M$ be arbitrary and let $(U, (x^i))$ be a smooth chart around $p \in M$ such that on U we have

$$\frac{\partial \omega_j}{\partial x^i} = \frac{\partial \omega_i}{\partial x^j} \quad \text{for all } 1 \leq i, j \leq n.$$

By part (a)(i), we obtain

$$d\omega = \sum_{j < i} \underbrace{\left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right)}_{=0} dx^j \wedge dx^i = 0,$$

and thus $d\omega_p = 0$. As $p \in M$ was arbitrary, we conclude that $d\omega = 0$, so ω is closed.

(b)(i) Consider the function

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad (x, y) \mapsto \sin(xy)$$

and observe that $df = \omega$; in other words, ω is exact. Hence, ω is closed. (This can also be verified with a direct computation).

(b)(ii) We have

$$\begin{aligned} d\eta &= d(x \cos(xy)) \wedge dx + d(y \cos(xy)) \wedge dy \\ &= \left((\cos(xy) - xy \sin(xy)) dx + (-x^2 \sin(xy)) dy \right) \wedge dx + \\ &\quad + \left(-y^2 \sin(xy) dx + (\cos(xy) - xy \sin(xy)) dy \right) \wedge dy \\ &= -x^2 \sin(xy) dy \wedge dx - y^2 \sin(xy) dx \wedge dy \\ &= (x^2 - y^2) \sin(xy) dx \wedge dy, \end{aligned}$$

which does not vanish identically on \mathbb{R}^2 . Therefore, η is not closed (see also part (a)(ii)), and thus η cannot be exact either.

(b)(iii) We compute that

$$\begin{aligned} \omega \wedge \eta &= (y \cos(xy) dx + x \cos(xy) dy) \wedge (x \cos(xy) dx + y \cos(xy) dy) \\ &= y^2 \cos^2(xy) dx \wedge dy + x^2 \cos^2(xy) dy \wedge dx \\ &= (y^2 - x^2) \cos^2(xy) dx \wedge dy. \end{aligned}$$

(c) The straight line segment from $(0, 0)$ to $(\sqrt{\pi}, \sqrt{\pi})$ can be parametrized by the smooth curve segment

$$\gamma: [0, \sqrt{\pi}] \rightarrow \mathbb{R}^2, \quad t \mapsto (t, t).$$

Since $\omega = df$ is exact, by the fundamental theorem of line integrals we obtain

$$\begin{aligned} \int_{\gamma} \omega &= \int_{\gamma} df = (f \circ \gamma)(\sqrt{\pi}) - (f \circ \gamma)(0) \\ &= \sin(\pi) - \sin(0) = 0. \end{aligned}$$

Exercise 5: Consider the covector field $\omega \in \mathfrak{X}^*(\mathbb{R}^3)$ given by

$$\omega = e^{y^2} dx + 2xye^{y^2} dy - 2z dz.$$

- (a) Verify by direct computation that ω is closed.
- (b) Using the fact that $\omega \in \mathfrak{X}^*(\mathbb{R}^3)$ is exact on the star-shaped set \mathbb{R}^3 (which follows from *Poincaré's lemma*), find a *potential* for ω , i.e., a function $f \in C^\infty(\mathbb{R}^3)$ such that $\omega = df$.
- (c) Compute the line integral of ω along the smooth curve segment $\gamma: [0, 1] \rightarrow \mathbb{R}^3$, $t \mapsto (t, t^2, t^3)$.

Solution:

- (a) We have

$$\begin{aligned} d\omega &= (2ye^{y^2})dy \wedge dx + \left(2ye^{y^2}dx + (2xe^{y^2} + 4xy^2e^{y^2})dy \right) \wedge dy - 2dz \wedge dz \\ &= -(2ye^{y^2})dx \wedge dy + (2ye^{y^2})dx \wedge dy \\ &= 0. \end{aligned}$$

- (b) For $f \in C^\infty(\mathbb{R}^3)$ to be a potential for ω , it must satisfy

$$\frac{\partial f}{\partial x} = e^{y^2}, \quad \frac{\partial f}{\partial y} = 2xye^{y^2}, \quad \frac{\partial f}{\partial z} = -2z. \quad (1)$$

Holding y and z fixed and integrating the first equation of (1) with respect to x , we obtain

$$f(x, y, z) = \int e^{y^2} dx = xe^{y^2} + C_1(y, z),$$

where the “constant” of integration $C_1(y, z)$ may depend on the choice of (y, z) . Now, the second equation of (1) implies

$$2xye^{y^2} = \frac{\partial}{\partial y} \left(xe^{y^2} + C_1(y, z) \right) = 2xye^{y^2} + \frac{\partial C_1}{\partial y}(y, z),$$

which forces $\frac{\partial C_1}{\partial y} = 0$, so C_1 is actually a function of z only. Finally, the third equation of (1) yields

$$-2z = \frac{\partial}{\partial z} \left(xe^{y^2} + C_1(z) \right) = \frac{dC_1}{dz}(z),$$

which implies that $C_1(z) = -z^2 + c$, where $c \in \mathbb{R}$ is an arbitrary constant. Hence, a potential function for ω is given by

$$f: \mathbb{R}^3 \rightarrow \mathbb{R}, \quad f(x, y, z) = xe^{y^2} - z^2.$$

Any other potential differs from this one by a constant.

(c) Since $\omega = df$ is exact, by the fundamental theorem of line integrals we obtain

$$\begin{aligned} \int_{\gamma} \omega &= \int_{\gamma} df = (f \circ \gamma)(1) - (f \circ \gamma)(0) \\ &= f(1, 1, 1) - f(0, 0, 0) = e - 1. \end{aligned}$$