

# Differential Geometry II - Smooth Manifolds Winter Term 2025/2026 Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

# Exercise Sheet 14

No submission!

**Definition.** Let M be a smooth manifold with or without boundary.

- (a) A curve segment in M is defined to be a continuous curve  $\gamma \colon [a,b] \to M$  whose domain is a compact interval. It is a smooth curve segment in M if it is smooth when [a,b] is considered as a manifold with boundary (or, equivalently, if  $\gamma$  has an extension to a smooth curve defined in a neighborhood of each endpoint). It is a piecewise smooth curve segment in M if there exists a finite partition  $a_0 = a < a_1 < \cdots < a_{k-1} < a_k = b$  of [a,b] such that  $\gamma|_{[a_{i-1},a_i]}$  is smooth for every  $1 \le i \le k$ .
- (b) Let  $\omega$  be a smooth covector field on M. If  $\gamma \colon [a,b] \to M$  is a piecewise smooth curve segment, then the line integral of  $\omega$  over  $\gamma$  is defined to be the real number

$$\int_{\gamma} \omega := \sum_{i=1}^{k} \int_{[a_{i-1}, a_i]} \gamma^* \omega,$$

where  $[a_{i-1}, a_i]$ ,  $1 \leq i \leq k$ , are subintervals of [a, b] on which  $\gamma$  is smooth. If t denotes the standard coordinate on  $\mathbb{R}$ , then the smooth covector field  $\omega_i := \gamma^* \omega = \left(\gamma|_{[a_{i-1}, a_i]}\right)^* \omega$  on  $[a_{i-1}, a_i]$  can be written as  $\omega_i = f_i(t) dt$  for some smooth function  $f_i : [a_{i-1}, a_i] \to \mathbb{R}$ , so the integral of  $\omega_i$  over  $[a_{i-1}, a_i]$  is given by

$$\int_{[a_{i-1},a_i]} \omega_i = \int_{a_{i-1}}^{a_i} f_i(t) \, dt.$$

Therefore,

$$\int_{\gamma} \omega = \sum_{i=1}^{k} \int_{a_{i-1}}^{a_i} f_i(t) dt.$$

<sup>&</sup>lt;sup>1</sup>Continuity of  $\gamma$  means that  $\gamma(t)$  approaches the same value as t approaches any of the points  $a_i$  (other than  $a_0$  or  $a_k$ ) from the left or the right. Smoothness of  $\gamma$  in each subinterval means that  $\gamma$  has one-sided velocity vectors at each such  $a_i$  when approaching from the left or the right, but these one-sided velocities need not be equal.

## Exercise 1 (Properties of line integrals):

Let M be a smooth manifold with or without boundary. Let  $\gamma \colon [a,b] \to M$  be a piecewise smooth curve segment in M, and let  $\omega$ ,  $\omega_1$ ,  $\omega_2 \in \mathfrak{X}^*(M)$ . Prove the following assertions:

(a) For any  $c_1, c_2 \in \mathbb{R}$  we have

$$\int_{\gamma} \left( c_1 \omega_1 + c_2 \omega_2 \right) = c_1 \int_{\gamma} \omega_1 + c_2 \int_{\gamma} \omega_2.$$

(b) If  $\gamma$  is a constant map, then

$$\int_{\gamma} \omega = 0.$$

(c) If  $\gamma_1 := \gamma|_{[a,c]}$  and  $\gamma_2 := \gamma|_{[c,b]}$ , where  $a,b,c \in \mathbb{R}$  with a < c < b, then

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega.$$

(d) If  $F: M \to N$  is any smooth map and if  $\eta \in \mathfrak{X}^*(N)$ , then

$$\int_{\gamma} F^* \eta = \int_{F \circ \gamma} \eta.$$

**Definition.** Let M be a smooth manifold with or without boundary. If  $\gamma \colon [a,b] \to M$  and  $\widetilde{\gamma} \colon [c,d] \to M$  are piecewise smooth curve segments in M, then we say that  $\widetilde{\gamma}$  is a reparametrization of  $\gamma$  if  $\widetilde{\gamma} = \gamma \circ \varphi$  for some diffeomorphism  $\varphi \colon [c,d] \to [a,b]$ . If  $\varphi$  is an increasing function, then we say that  $\widetilde{\gamma}$  is a backward reparametrization, while if  $\varphi$  is a decreasing function, then we say that  $\widetilde{\gamma}$  is a backward reparametrization. (More generally, with obvious modifications one can allow  $\varphi$  to be piecewise smooth.)

### Exercise 2 (Parameter independence of line integrals):

Let M be a smooth manifold with or without boundary,  $\omega \in \mathfrak{X}^*(M)$ , and let  $\gamma$  be a piecewise smooth curve segment in M. Show that for any reparametrization  $\widetilde{\gamma}$  of  $\gamma$  we have

$$\int_{\widetilde{\gamma}} \omega = \begin{cases} \int_{\gamma} \omega & \text{if } \widetilde{\gamma} \text{ is a forward reparametrization,} \\ -\int_{\gamma} \omega & \text{if } \widetilde{\gamma} \text{ is a backward reparametrization.} \end{cases}$$

### Exercise 3:

Let M be a compact, connected, oriented, smooth n-manifold without boundary (i.e.,  $\partial M = \emptyset$ ), where  $n \geq 1$ , and let  $\omega \in \Omega^{n-1}(M)$ . Show that there exists a point  $p \in M$  such that  $(d\omega)_p = 0 \in \Lambda^n(T_p^*M)$ .

## Exercise 4:

- (a) Let M be a smooth n-manifold (without boundary) and let  $\omega \in \Omega^1(M)$ .
  - (i) Let  $(U,(x^i))$  be a smooth coordinate chart for M, and write  $\omega|_U = \sum_{i=1}^n \omega_i dx^i$  in this chart. Find an expression for the *exterior derivative*  $d\omega \in \Omega^2(M)$  of  $\omega$  in this chart (that is, an expression of  $d\omega$  in terms of the natural basis induced in each fiber of  $\Lambda^2(T^*M)$  by the given chart).
  - (ii) Deduce that  $\omega$  is closed if and only if for every point  $p \in M$  there exists a smooth coordinate chart  $(U, (x^i))$  such that  $p \in U$  and

$$\frac{\partial \omega_j}{\partial x^i} = \frac{\partial \omega_i}{\partial x^j} \text{ for all } 1 \le i, j \le n,$$

where  $\omega|_{U} = \sum_{i=1}^{n} \omega_{i} dx^{i}$  in this chart.

(b) Consider the smooth 1-forms

$$\omega = y \cos(xy) dx + x \cos(xy) dy \in \Omega^1(\mathbb{R}^2)$$

and

$$\eta = x \cos(xy) dx + y \cos(xy) dy \in \Omega^1(\mathbb{R}^2).$$

- (i) Show that  $\omega$  is closed and exact.
- (ii) Show that  $\eta$  is neither closed nor exact.
- (iii) Compute  $\omega \wedge \eta$ .
- (c) Evaluate the line integral

$$\int_{\gamma} \omega$$
,

where  $\gamma$  is the straight line segment from (0,0) to  $(\sqrt{\pi},\sqrt{\pi})$ .

#### Exercise 5:

Consider the covector field  $\omega \in \mathfrak{X}^*(\mathbb{R}^3)$  given by

$$\omega = e^{y^2} dx + 2xye^{y^2} dy - 2z dz.$$

- (a) Verify by direct computation that  $\omega$  is closed.
- (b) Using the fact that  $\omega \in \mathfrak{X}^*(\mathbb{R}^3)$  is exact on the star-shaped set  $\mathbb{R}^3$  (which follows from  $Poincar\acute{e}$ 's lemma), find a potential for  $\omega$ , i.e., a function  $f \in C^{\infty}(\mathbb{R}^3)$  such that  $\omega = df$ .
- (c) Compute the line integral of  $\omega$  along the smooth curve segment  $\gamma \colon [0,1] \to \mathbb{R}^3, \ t \mapsto (t,t^2,t^3).$

3