Série 19 Euler 3éme année

Série 19

Pour le 11 février 2026

Exercice 1

Calcule l'inverse de la matrice suivante a 1'aide d’opérations élémentaires sur les lignes. Ecris

explicitement quelle opération tu effectues a chaque pas.
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Exercice 2

Calcule toutes les solutions du systéme linéaire suivant en fonction des valeurs du paramétre a :
z + ay = —1
r — Yy = a.

Exercice 3

Calcule toutes les solutions du systéme linéaire suivant en fonction des valeurs du paramétre a :

ar + (1—a)y + (1—a)z = a?
ax + (I1+a)y + (14+a)z = a—a®
r + Y + z = 1—a.

Exercice 4

Soit a : C* — C3 lapplication C-linéaire définie par o(z,y, 2) = (—3z+14y+2z, 3y, —3x+17Ty+22).
Calcule la matrice de o par rapport a la base canonique, puis toutes les valeurs propres et les
espaces propres associés. Détermine la base dans laquelle la matrice est diagonale et donne la

matrice diagonale.
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Exercice 5
Soit a : C* — C? I'application C-linéaire définie par a(z,y,2) = (z + 2y, 3y, 2z — 4y + 22).
Calcule la matrice de « par rapport a la base canonique, puis toutes les valeurs propres et les
espaces propres associés. Détermine la base dans laquelle la matrice est diagonale et donne la
matrice diagonale.

Exercice 6
Vrai ou faux ? Justifie briévement tes réponses, en construisant un contre-exemple élémentaire

lorsque c’est possible.

a) Si A et B sont semblables, alors elles ont le méme rang.
b) Si A et B ont méme rang, alors elles sont semblables.
c) Les matrices de rotation d’angle /4 et d’angle 7/8 sont équivalentes.

d) Si A et I, sont semblables, alors A = I,,.

Exercice 7
On considére la matrice & coeflicients réels

11
A=1la a a
b b b
Calcule ses valeurs propres et les espaces propres correspondants en fonction des parameétres a et

b.

Exercice 8

Soit V' I'espace vectoriel réel, de dimension infinie, de toutes les suites de nombre réels (z1, x2, 3, . . . ).
On considére 'application « : V' — V définie par «o(z, e, x3,...) = (22, 23,24, ... ). Montre que

« est linéaire et calcule toutes les valeurs propres et les vecteurs propres de a.
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Exercice 9

Calcule toutes les valeurs propres et tous les vecteurs propres de la matrice A € M, (K) dont tous

les coefficients valent 1.

Exercices théoriques

Exercice 10

Soit a,, 8 : V' — V deux applications linéaires. Montre que a o 3 et o a ont les mémes valeurs
propres (mais pas forcément les mémes vecteurs propres).
Indication. Si v est vecteur propre de a o 3, observe attentivement le vecteur 5(v)...

Exercice 11

Les matrices scalaires. Une matrice est dite scalaire si elle est de la forme al,, = diag(a,...,a).
Soit @ : K™ — K" une application linéaire pour laquelle il existe une base de vecteurs propres

B=(e,...,en,) telle que A = () est scalaire, A = al,.
a) Montre que tout vecteur v € K™ est un vecteur propre de a pour la valeur propre a.

b) Montre que toute base de K™ est une base de vecteurs propres de «.

¢) Montre que pour tout choix de base C de K", on a (a)§ = al,,.
d) Déduis des parties précédentes que si A ~ al,,, alors A = al,.

e) Démontre matriciellement, sans passer par les applications linéaires, que si A =~ al,, alors

A=ual,.



