
Corrigé série 10 Euler 3ème année

Corrigé série 10

Exercice 1 (10 points)

a) f ′(x) = 3e3x

b) f ′(x) = (2x+ 1)e−2x + (x2 + x+ 1)e−2x · (−2) = e−2x(2x+ 1− 2x2 − 2x− 2) = e−2x(−2x2 − 1)

= −e−2x(1 + 2x2)

c) f ′(x) = e
x

x+1 · 1 · (x+ 1)− x · 1
(x+ 1)2

=
e

x
x+1

(x+ 1)2

d) f ′(x) =
5

5x
=

1

x

e) f ′(x) =
(2x− 1) ln(x)− (x2 − x) · 1

x

ln(x)2
=

(2x− 1) ln(x)− x+ 1

ln(x)2

f) f ′(x) =
1− 2x

x− x2

Exercice 2 (20 points)

a) Comme f(x) =
ln(x)

ln(1/2)
= − ln(x)

ln(2)
, on peut s’attendre à ce que f ait essentiellement le même

comportement que la fonction ln, à la différence que, comme ln(1/2) < 0, tout sera "inversé" :

Le domaine de définition de f est R>0, elle n’a pas de points de discontinuité. Ici, il n’y a pas
lieu de parler de parité, et f n’est pas périodique (comme elle converge vers −∞ pour x → ∞).
Pour x → 0, f(x) → +∞ (comme elle a un comportement symétrique par rapport à ln), elle
admet donc un asymptote verticale en x = 0.

Comme
f(x)

x
→ 0 pour x → ∞, mais (f(x)−0 ·x) → ∞ pour x → ∞, il n’y a pas d’asymptote

oblique.
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La dérivée de f est

f ′(x) = − 1

x ln(2)
,

elle a donc le même domaine de définition que f , et est partout strictement négative. Elle
converge vers −∞ pour x → 0, et vers 0 pour x → ∞.

La dérivée seconde de f est

f ′′(x) =
1

x2 ln(2)
,

elle a donc le même domaine de définition que f , et est partout strictement positive. Elle
converge vers ∞ pour x → 0, et vers 0 pour x → ∞.

On déduit de ces observation que f est partout convexe, sans point d’inflexion, sans extrema.

L’équation f(x) = 0 a pour seul solution x = 1. Comme f est décroissante, cela implique que
f est positive sur ]0, 1[ et négative sur ]1,∞[.

b) Comme f(x) =
ex − e−x

2
, il est ici clair que la fonction est impaire. Son domaine de définition

est R, elle n’admet pas de périodicité (ce sera une conséquence de l’étude de sa dérivée).
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La fonction f converge vers +∞ (resp. −∞) pour x → +∞ (resp. x → −∞). Il est facile de
vérifier qu’il n’y a pas d’asymptotes (verticales/horizontales/obliques).

La dérivée est f est f ′(x) = cosh(x) =
ex + e−x

2
, qui est définie sur tout R et partout strictement

positive, ayant deux limites à ∞ pour x → ±∞.

La dérivée seconde de f est f ′′(x) = sinh(x) = f(x).

Il découle de ces observations que f est partout strictement croissante, sans extrema locaux,
avec un point d’inflexion quand sa dérivée seconde change de signe : comme f ′′(x) = f(x), cela
revient à résoudre f(x) = 0, qui a pour unique solution x = 0. Ainsi, f est concave sur ]−∞, 0[

et convexe sur ]0,∞[.

c) Ici, f(x) =
ex + e−x

2
, on voit donc que f est paire, son domaine de définition est égal à R et

qu’elle n’admet pas de périodicité.
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La fonction f converge vers ∞ pour x → ±∞ ; ayant dans les deux cas un comportement
purement exponentiel, elle n’a pas d’asymptotes (verticales/horizontales/obliques).
La dérivée de f est f ′(x) = sinh(x), que nous avons déjà étudiée ; sa dérivée seconde est
f ′′(x) = cosh(x) = f(x).
Ainsi, on a que f est partout strictement positive, décroissante sur ] −∞, 0[ et croissante sur
]0,∞[, elle atteint donc un minimum global en x = 0, ayant pour ordonnée

f(0) =
e0 + e0

2
= 1.

Comme f ′′ est partout strictement positive, f n’a pas de point d’inflexion, elle est partout
convexe.

d) Ici f(x) = e−x2 est définie sur R, partout strictement positive, et clairement paire.
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Elle admet deux asymptotes horizontales d’équations y = 0 pour x → ±∞, mais n’a pas
d’asymptotes verticales ou obliques.
Sa dérivée est

f ′(x) = −2e−x2

x =
−2x

ex2 ,

qui converge vers 0 pour x → ±∞. La dérivée f ′ à le signe de l’opposé de son argument, ainsi
f est croissante sur ]−∞, 0[ et décroissante sur ]0,∞[, elle admet donc un maximum global en
x = 0, où son ordonnée vaut f(0) = 1.
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La dérivée seconde de f est

f ′′(x) = 2e−x2

(2x2 − 1) =
2 (2x2 − 1)

ex2 ,

qui est toujours positive sauf entre les racines de 2x2 − 1, qui sont ±
√
2

2
, ainsi f est convexe

sauf entre ces deux points, qui sont donc des points d’inflexion.

Exercice 3 (10 points)
On utilise plusieurs fois la règle de Bernoulli-L’Hospital sans le dire explicitement :

a) lim
x→∞

4 ln(x)

x3
= lim

x→∞

4

3x3
= 0

b) lim
x→∞

ln(x)

ex
= lim

x→∞

1

xex
= 0

c) lim
x→∞

x3 ln(x4) = ∞

d) lim
x→−∞

x2 + 3x+ 1

e−x
= lim

x→−∞

2x+ 3

−e−x
= lim

x→−∞

2

e−x
= 0.

e) lim
x→2

ln(x2 − 3)

x− 2
= lim

x→2

2x

x2 − 3
= 4

f) lim
x→1

1− x+ ln(x)

1−
√
2x− x2

= lim
x→1

−
2
(
1
x
− 1
)√

2x− x2

2− 2x
= lim

x→1
−
√
2x− x2

x
= −1

Exercice 4 (5 points)
On calcule (de préférence avec une machine !) que h(1) ≈ 75.77. De plus,

h′(x) = 6.39 + 0.993e3.261−0.993x.

Ainsi, h′(1) ≈ 15.98.
La deuxième partie du problème nous demande d’étudier la fonction h′ pour trouver ses extrema
sur l’intervalle [0.25; 6]. Posons

f(x) = h′(x) = 6.39 + 0.993e3.261−0.993x,

et calculons la dérivée de f

f ′(x) = −0.986049e3.261−0.993x.

Comme f ′ est toujours négative, le maximum de f est atteint au début de l’intervalle [0.25; 6], et
son minimum à la fin.
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Exercice 5 (5 points)
De l’égalité

cosh2(t)− sinh2(t) = 1,

on déduit
2
(√

3 cosh(t)
)2

− 3
(√

2 sinh(t)
)2

= 6.

Ainsi, on pose x(t) =
√
2 sinh(t),

y(t) =
√
3 cosh(t).

A noter que cette paramétrisation ne représente pas toutes les solutions réelles de 2y2−3x2 = 6,
car la valeur de y(t) dans la paramétrisation est toujours positive, alors que (x(t),−y(t)) est aussi
solution.

Exercice 6 (5 points)

a) Faux. Comme 3x = ex ln 3, il est facile de s’assurer que x 7→ 3x est dérivable autant de fois qu’on
le souhaite. En effet, une induction simple montre que la dérivée nème (notée (3x)(n)) de 3x est

(3x)(n) = lnn(3)ex ln 3.

b) Vrai. Même argument que pour le point précédent.

c) Faux. Comme on sait que sinh(x) est strictement croissante (cf. exercice ), il ne peut pas y
avoir de périodicité. En effet, la condition

sinh(x) = sinh(x+ P ), pour tout x ∈ R,

pour un P > 0 contredirait la croissance stricte de sinh(x).

d) Faux. Pour obtenir une contradiction, supposons que

cosh(x) = ax2 + bx+ c

pour certaines constantes a, b, c ∈ R.

Alors, on aura
1 = cosh(0) = a · 02 + b · 0 + c,

et donc, c=1.

De plus, comme cosh(x) est paire (cf. exercice ),

a+ b+ 1 = cosh(1) = cosh(−1) = a− b+ 1,
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d’où a+ b = a− b, et donc b = 0. On a maintenant,

cosh(x) = ax2 + 1.

De cosh(2) = a · 4 + 1, on déduit que a ≈ 0.69, alors que de cosh(3) = a · 9 + 1, on déduit que
a ≈ 1.01. Nous avons une contradiction.

Exercice 7 (5 points)
Il découle de notre analyse de la fonction sinh de l’exercice que sinh est bijective de R dans R.

En effet, elle est strictement croissante et on a

lim
x→−∞

sinh(x) = −∞ et lim
x→∞

sinh(x) = ∞.

Un résultat élémentaire veut que

une fonction f : R → R est bijective

⇔
il existe une fonction g : R → R

telle que les composées f ◦ g et g ◦ f sont l’identité sur R.

Si f est bijective, il est facile de vérifier que g est en fait unique. On donne donc un nom à g (on
l’appelle l’inverse de f) et on lui réserve un symbole (on le note f−1).
Comme on sait que sinh est bijective (cf ci-dessus), on doit montrer ici que

g(x) = ln(x+
√
x2 + 1) (1)

satisfait à
g ◦ sinh = identité et sinh ◦g = identité

pour avoir que g est l’unique inverse de sinh. La bonne nouvelle, c’est qu’en fait nous n’aurons à
vérifier qu’une seule de ces égalités. En effet, posons id la fonction identité de R → R et sinh−1

l’unique inverse de sinh. Alors, si une fonction (quelconque) g satisfait g ◦ sinh = id, on aura

g = g ◦ id = g ◦ (sinh ◦ sinh−1) = (g ◦ sinh) ◦ sinh−1

= id ◦ sinh−1 = sinh−1,

donc g = sinh−1.
Ainsi, il nous suffit de montrer que la fonction g définie dans (1) satisfait à g ◦ sinh = id pour
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pouvoir conclure.
Soit donc x ∈ R. On a

g ◦ sinh(x) = g

(
ex − e−x

2

)
= ln

(
ex − e−x

2
+

√
e2x + e−2x − 2

4
+ 1

)

= ln

(
ex − e−x

2
+

√
(ex + e−x)2

4

)
= ln

(
ex − e−x

2
+

ex + e−x

2

)
= ln(ex) = x.

Ce qui montre que l’inverse de sinh est bien g(x) = ln(x+
√
x2 + 1).

On a

g′(x) =
1

x+
√
1 + x2

·
(
1 +

2x

2
√
1 + x2

)
=

1√
1 + x2

et g′′(x) = − x√
(x2 + 1)3

.

-4 -2 2 4
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Exercice 8 (5 points)
Si on suit l’indication, on arrive à l’équation

2−2y2 − y − 3 = 0,

qui est équivalente à
y2 − 4y − 12 = 0.

En factorisant, on trouve y = −2 ou y = 6, et donc on a les deux possibilités

22x = −2 et 22x = 6.

Comme 2y est toujours positif pour tout y ∈ R, la première possibilité 22x = −2 est impossible,
il ne nous reste donc que 22x = 6, que l’on peut résoudre en appliquant le logarithme des deux
côtés :

2x ln(2) = ln(6),

et donc x = ln(6)
2 ln(2)

≈ 1.29.
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Exercice 9 (10 points)

a) On sait que loga : R>0 → R est une fonction bijective. Elle admet dont un inverse f : R → R>0.
Pour vérifier qu’un candidat f est l’inverse de lna, il nous suffit de vérifier que loga ◦f = identité
(cf question ).

On calcule donc

(loga ◦f)(x) = loga
(
ex ln(a)

)
=

ln(ex ln(a))

ln(a)
=

x ln(a)

ln(a)
= x.

Le domaine de définition de f est R et son image est R>0.

b) Soit n ∈ Z, alors
f(n) = en ln(a) =

(
eln(a)

)n
= an.

Soit r = p/q un nombre rationnel (p, q ∈ Z). Alors

f(r) = f(p/q) = e(p/q) ln(a) =
(
eln(a)

)p/q
= ap/q = ar.

c) ax+y = e(x+y) ln(a) = ex ln(a) · ey ln(a) = axay

d) (ab)x = ex ln(ab) = ex(ln(a)+ln(b)) = ex ln(a)ex ln(b)(a
b

)x
= ex ln(a/b) = ex(ln(a)−ln(b)) =

ex ln(a)

ex ln(b)
=

ax

bx
.

e) Comme ax = f(x) = ex ln(a), on a

f ′(x) = ln(a)ex ln(a) = ln(a)ax,

qui, pour a > 1, est toujours strictement positive. Alors que pour a ∈]0, 1[, la dérivée f ′ est
toujours strictement négative.

f) On a directement
f ′′(x) = ln(a)2ex ln(a).

qui est toujours strictement positive. Ainsi, f est partout convexe.

g) On a

lim
x→∞

ax

xa
= lim

x→∞

ex ln(a)

ea ln(x)
= lim

x→∞
ex ln(a)−a ln(x) = elimx→∞(x ln(a)−a ln(x)),

où, pour la dernière étape du calcul, on a utilisé la continuité de x 7→ ex.

Divisons les cas : Si a > 1. Comme la dérivée de

x 7→ (x ln(a)− a ln(x)) est x 7→
(
ln(a)− a

x

)
,
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qui est toujours strictement supérieure à une constante > 0 pour x suffisamment grand, on a,
en utilisant le théorème des accroissement finis,

lim
x→∞

(x ln(a)− a ln(x)) = ∞.

Ainsi, dans ce cas,

lim
x→∞

ax

xa
= ∞.

On traite le cas a < 1, de manière similaire : on montre que lim
x→∞

(x ln(a) − a ln(x)) = −∞, et

donc lim
x→∞

ax

xa
= 0.
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