
Advanced Probability and Applications EPFL - Fall Semester 2025-2026

Midterm exam #2: solutions

Please pay attention to the presentation of your answers and always provide justification. Correct
answer alone will not get you full points.

Exercise 1. Quiz. (18 points) Answer each question below (1 pt) and provide a short justifica-
tion (proof or counter-example) for your answer (2 pts).

a) Let X and Y be discrete random variables with probability mass functions

pX(0) = pX(1) =
1

2
and pY (0) = pY (1) = pY (2) =

1

3
.

What is dTV (X,Y )? Find the maximal coupling of (X,Y ); that is, find a coupling that achieves
the coupling inequality.

Solution:

dTV (X,Y ) =
1

2

2∑
k=0

|pX(k)− pY (k)| =
1

2

(
1

2
− 1

3
+

1

2
− 1

3
+

1

3

)
=

1

3

The maximal coupling (X ′, Y ′) will be the one that achieves P({X ′ = Y ′}) = 1− dTV (X,Y ) = 2
3 .

By inspection, this is the coupling with pmf

pX′Y ′(k,m) =

{
1
3 , k = m
1
6 , m = 2

b) Let X1 and X2 be independent random variables. Let Y1 and Y2 be independent random
variables such that Xi ⪰ Yi for i = 1, 2. That is, Xi stochastically dominates Yi. Then, is it true
that

X1 +X2 ⪰ Y1 + Y2?

Solution: Yes, this is true. We know that Xi ⪰ Yi implies that there exists a coupling (X̂i, Ŷi)
with X̂i ≥ Ŷi a.s. Pick such couplings (X̂1, Ŷ1) and (X̂2, Ŷ2) to be independent of each other. Then,

X̂1 + X̂2 ≥ Ŷ1 + Ŷ2 a.s

But, we know that X̂1 + X̂2 has the same distribution as X1 +X2. Likewise, Ŷ1 + Ŷ2 has the same
distribution as Y1 + Y2. It follows that X1 +X2 ⪰ Y1 + Y2.

c) Let X and Y be independent Uniform(0,1) random variables. Use convolution to find the pdf
of X + Y .

Solution: The pdf of a Uniform(0, 1) random variable is

fX(x) = 1[0,1](x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.
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Since X and Y are independent, the pdf of X + Y is the convolution

fX+Y (t) = (fX ∗ fY )(t) =
∫ ∞

−∞
fX(s) fY (t− s) ds.

When 0 ≤ t ≤ 1 and 0 ≤ s ≤ t ≤ 1, then 0 ≤ t− s ≤ t ≤ 1 and the integral is positive:

fX+Y (t) =

∫ t

0
fX(s) fY (t− s) ds

=

∫ t

0
1 ds

= t.

When 1 ≤ t ≤ 2 and t− 1 ≤ s ≤ 1, then 0 ≤ t− 1 ≤ t− s ≤ 1 and the integral is positive:

fX+Y (t) =

∫ 1

t−1
fX(s) fY (t− s) ds

=

∫ t

t−1
1 ds

= 2− t.

When t < 0 or t > 2, it is easy to see that fX+Y = 0. From these, we conclude that:

fX+Y (t) =


t, 0 ≤ t ≤ 1,

2− t, 1 ≤ t ≤ 2,

0, otherwise.

d) Let X and Y be two random variables with mean 0, variance 1 and covariance ρ. Show that
E[max(X2, Y 2)] ≤ 1 +

√
1− ρ2. Hint : use that max(a, b) = (a+ b+ |a− b|)/2 for any a, b ∈ R.

Solution:

E(max{X2, Y 2}) = 1

2
E(X2 + Y 2) +

1

2
E|(X − Y )(X + Y )|

≤ 1 +
1

2

√
E((X − Y )2)E((X + Y )2)

= 1 +
1

2

√
(2− 2ρ)(2 + 2ρ) = 1 +

√
1− ρ2,

where we have used the Cauchy-Schwarz inequality.

e) Let X = (X1, X2) and Y = (Y1, Y2) be two Gaussian random vectors. Is it true that X + Y =
(X1 + Y1, X2 + Y2) is a Gaussian random vector?

Solution: The statement is not true in general. The sum of two Gaussian vectors is a Gaussian
vector if they are jointly Gaussian (for instance, if they are independent), but this is not guaranteed
by the premises.

Counterexample: Let X1 ∼ N (0, 1) be a standard normal random variable. Let S be an inde-
pendent random variable, with P(S = 1) = P(S = −1) = 1/2.
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Define the vectors X and Y as follows:

X = (X1, 0) and Y = (0, SX1)

First, we show that both X and Y are Gaussian vectors.

• For vector X = (X1, 0), any linear combination of its components is aX1+ b · 0 = aX1, which
is a normal random variable (possibly degenerate if a = 0). Thus, X is a Gaussian vector.

• For vector Y = (0, SX1), we first check the distribution of the component Y2 = SX1. For any
y ∈ R, the CDF is P(SX1 ≤ y) = 1

2P(X1 ≤ y) + 1
2P(−X1 ≤ y) = 1

2Φ(y) +
1
2P(X1 ≥ −y) =

1
2Φ(y) +

1
2Φ(y) = Φ(y), where Φ is the standard normal CDF. So Y2 ∼ N (0, 1). Any linear

combination of the components of Y is a · 0 + b(SX1) = bSX1, which is a normal random
variable. Thus, Y is a Gaussian vector.

Now, consider the sum vector Z = X + Y :

Z = (X1, SX1)

To check if Z is a Gaussian vector, we examine a linear combination of its components, for example,
their sum Z1 + Z2 = X1 + SX1 = X1(1 + S). The random variable (1 + S) takes the value 2 with
probability 1/2 (when S = 1) and the value 0 with probability 1/2 (when S = −1). Therefore, the
distribution of X1(1 + S) is a mixture: it is the random variable 2X1 with probability 1/2 and the
constant 0 with probability 1/2. This distribution is not normal (it has a point mass at 0). Since
not all linear combinations of the components of Z are normally distributed, Z = X + Y is not a
Gaussian vector.

f) Suppose that X and Y are i.i.d. random variables with mean 0 and variance 1. Can it be the
case that X+Y√

2
has the same distribution as X?

Solution: Yes. Let X and Y be Gaussian random variables. Since they are independent, they
form are Gaussian vector. Hence, X + Y ∼ N (0,

√
2) and X+Y√

2
∼ N (0, 1). X+Y√

2
has the same

distribution as X.

Exercise 2. (16 points)

Part 1. Preliminaries Consider the sequences of random variables {Un}n≥1 and {Wn}n≥1, and
random variables U and W , all defined on the same probability space (Ω,F ,P).

a) Show that if Wn
d→

n→∞
c, where c is a constant, then Wn

P→
n→∞

c.

Solution: Since Wn
d→

n→∞
c, we have P(Xn ≤ x) → 0 if x < c and P(Xn ≤ x) → 1 if x > c. This

implies, for any ϵ > 0,

P(|Xn − c| > ϵ) = P(Xn > c+ ϵ) + P(Xn < c− ϵ)

≤ 1− P(Xn ≤ c+ ϵ) + P(Xn ≤ c− ϵ) →
n→∞

0.

Thus, Wn
P→

n→∞
c.
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Slutsky’s theorem: Suppose that

Un
d→

n→∞
U and Wn

P→
n→∞

c

where c is a constant. Then, Slutsky’s theorem says that

i) UnWn
d→

n→∞
cU and ii) Un +Wn

d→
n→∞

c+ U.

b) Argue that Slutsky’s theorem cannot be true under a more general convergence condition

Wn
P→

n→∞
W . It is enough to provide a counterexample for either i) or ii).

Solution: One possible counter example is as follows. Let W be a non-zero, symmetrically dis-

tributed random variable. Let Wn = W and Un = −W . Then Wn
P→

n→∞
W and Un

d→
n→∞

W .

However, Wn + Un = 0 for all n, and this does not converge in distribution to 2W .

c) Show that if Un
d→

n→∞
U then f(Un)

d→
n→∞

f(U) for any continuous function f . Hint: If g(x) is a

continuous and bounded function, and f(x) is a continuous function, then g(f(x)) is a continuous
and bounded function.

Solution: We know from class notes that Un
d→

n→∞
U if and only if E(g(Un)) →

n→∞
E(g(U)) for all

continuous and bounded U . This implies that E(g(f(Un))) →
n→∞

E(g(f(U))) for all continuous and

bounded g. This, in turn, implies that f(Un)
d→

n→∞
f(U).

Part 2. (Self-Centralized Central Limit Theorem) Let {Xk}k≥1 be i.i.d. random variables
with mean zero and finite variance σ2 = E[X2

1 ]. Consider the sums

Sn =

n∑
k=1

Xk, Vn =

(
n∑

k=1

X2
k

)
, and Tn =

Sn

V
1/2
n

.

d) Determine the limiting distribution of Sn√
nσ2

.

Solution: By the Central Limit Theorem, since the Xk are i.i.d. with mean 0 and finite variance
σ2 = E[X2

1 ],

Sn√
nσ2

=

∑n
k=1Xk√
nσ2

d−→ Z, Z ∼ N (0, 1).

Thus the limiting distribution of Sn/
√
nσ2 is standard normal.

e) Does Vn
n

P→
n→∞

V for some random variable V ? If yes, what is V ?

Solution: By the Weak Law of Large Numbers, applied to the nonnegative random variables X2
k

which have mean σ2 (i.e. E(|Xk|) < ∞),

Vn

n
=

1

n

n∑
k=1

X2
k

P−→ σ2.
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f) Find the limiting distribution of Tn. Hint: You may use any of the results in Part 1 of this
exercise.

Solution: From part (e), we know that

Vn

n

P−→ σ2 =⇒ Vn

n

d−→ σ2.

We use the result in part (c) with the continuous function f(Un) = σ U
−1/2
n to see that

f

(
Vn

n

)
=

σ
√
n

V
1/2
n

d−→ f(σ2) =
σ√
σ2

= 1.

From part (a), this implies that

σ
√
n

V
1/2
n

P−→ 1.

We write Tn as a multiplication of two quantities:

Tn =
Sn

V
1/2
n

=
Sn

σ
√
n
· σ

√
n

V
1/2
n

=: Un ·Wn.

From part (d) Sn

σ
√
n

= Un
d−→ Z ∼ N (0, 1). We found that

σ
√
n

V
1/2
n

= Wn
P−→ 1. Applying the

product form of Slutsky’s theorem given above, we obtain

Tn = UnWn
d−→ 1 · Z = Z.

Hence Tn
d−→ N (0, 1), which completes the proof.

Exercise 3. (16 points) Consider independent random variables {Xn}n≥1 defined on the same
probability space (Ω,F ,P), with

P(Xn = en) = e−n and P(Xn = 0) = 1− e−n.

a) Compute E (Xn) and Var(Xn) for n ≥ 1.

Solution: The random variable Xn takes values in {0, en}. Its expectation is: E[Xn] = 0 ·P(Xn =
0) + en · P(Xn = en) = en · e−n = 1. For the variance, we first compute the second moment:

E[X2
n] = 02 · P(Xn = 0) + (en)2 · P(Xn = en) = e2n · e−n = en.

Thus, the variance is:

Var(Xn) = E[X2
n]− (E[Xn])

2 = en − 12 = en − 1.

b) Show that Xn
P→

n→∞
0.

5



Solution: To show convergence in probability to 0, we check the condition limn→∞ P(|Xn| > ϵ) = 0
for any ϵ > 0. Since Xn ≥ 0, we have |Xn| = Xn. For any given ϵ > 0, there exists an integer
N such that for all n ≥ N , en > ϵ. For such n, the event {Xn > ϵ} is equivalent to {Xn = en}.
Therefore, for n ≥ N :

P(|Xn| > ϵ) = P(Xn = en) = e−n.

As n → ∞, e−n → 0, which proves that Xn → 0 in probability.

c) Show that Xn →
n→∞

0 a.s. Hint: consider An = {Xn ̸= 0}.

Solution: Set An = {Xn ̸= 0} = {Xn = en}. Then P(An) = e−n and

∞∑
n=1

P(An) =
∞∑
n=1

e−n =
1/e

1− 1/e
=

1

e− 1
< ∞.

By the Borel–Cantelli lemma,

P
(
{ω : ω ∈ An infinitely often}

)
= 0.

Hence with probability one, ω belongs to only finitely many An, i.e. there exists N(ω) such that
for all n > N(ω), Xn(ω) = 0. Therefore Xn → 0 almost surely.

Define partial sums Yn =
∑n

k=1Xk for n ≥ 1.

d) Does Yn →
n→∞

Y a.s., for some random variable Y ?

Solution: From (c), we know that for almost every ω ∈ Ω, the sequence of real numbers (Xn(ω))n≥1

is eventually zero. That is, there exists an N(ω) such that Xk(ω) = 0 for all k > N(ω). For such
an ω, the sequence of partial sums Yn(ω) =

∑n
k=1Xk(ω) becomes constant for n ≥ N(ω):

∀n ≥ N(ω), Yn(ω) =

N(ω)∑
k=1

Xk(ω) = YN(ω)(ω).

An eventually constant sequence is convergent. Therefore, for almost every ω, the sequence (Yn(ω))
converges. This means the sequence of random variables (Yn) converges almost surely to a limit,
which we denote by Y =

∑∞
k=1Xk.

e) Does Yn
L1

→
n→∞

Y , for some random variable Y ?

Solution: If (Yn) converged in L1, then the sequence of expectations (E[Yn]) would have to converge
to a finite limit. By linearity of expectation,

E[Yn] = E

[
n∑

k=1

Xk

]
=

n∑
k=1

E[Xk] =
n∑

k=1

1 = n.

Since limn→∞ E[Yn] = limn→∞ n = +∞, the sequence of expectations diverges. Therefore, (Yn)
does not converge in L1.
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