Advanced Probability and Applications EPFL - Fall Semester 2025-2026
Midterm exam #2: solutions

Please pay attention to the presentation of your answers and always provide justification. Correct
answer alone will not get you full points.

Exercise 1. Quiz. (18 points) Answer each question below (1 pt) and provide a short justifica-
tion (proof or counter-example) for your answer (2 pts).

a) Let X and Y be discrete random variables with probability mass functions

1 1
px(0) =px(1) =5 and py(0) =py(1) =py(2) = 5.
What is dry(X,Y)? Find the maximal coupling of (X,Y); that is, find a coupling that achieves
the coupling inequality.

Solution:

1/1 1 1 1 1 1
drv(X,Y) = Z'pX =5 (5-55-35+3) =3

The maximal coupling (X’,Y”) will be the one that achieves P({X' =Y'}) =1 —dpy(X,Y) = 2
By inspection, this is the coupling with pmf

i

pX’Y’(kvm) = {

m
2

k=
, m=

= Wl

b) Let X; and X5 be independent random variables. Let Y7 and Y3 be independent random
variables such that X; = Y; for ¢ = 1,2. That is, X; stochastically dominates Y;. Then, is it true
that

X1 +Xo =Y + Y57
Solution: Yes, this is true. We know that X; = Y; implies that there exists a coupling (X3, Y7)
with X; > Y; a.s. Pick such couplings (X1, Y1) and (X2, Y2) to be independent of each other. Then,
X1+ Xo>V1+Ys as

But, we know that X 1+ Xg has the same distribution as X7 + X5. Likewise, 171 + Yg has the same
distribution as Y7 + Y5. It follows that X7 + X5 = Y7 + Y5.

c) Let X and Y be independent Uniform(0,1) random variables. Use convolution to find the pdf
of X +Y.

Solution: The pdf of a Uniform(0, 1) random variable is

1, 0<x< 1,

0, otherwise.

)

fx(x) =1 y(x) = {

1



Since X and Y are independent, the pdf of X 4+ Y is the convolution
o0
feov® = (s < MO = [ Ix() frlt = 9)ds
—00
When 0 <t <land 0<s<t<1,then 0<t—s<t<1 and the integral is positive:

Frav(t) = /0 Fx(s) fy(t — ) ds

:/1ds
0

=t.

When 1 <t<2andt—1<s<1,then0<t—1<t—s<1 and the integral is positive:

1
fr(® = [ Ix(e) Syt = 9)ds

:/ lds
t—1

=21

When t < 0 or t > 2, it is easy to see that fxiy = 0. From these, we conclude that:

¢, 0<t<1,
fxiv(t)=42—t, 1<t<2,
0, otherwise.

d) Let X and Y be two random variables with mean 0, variance 1 and covariance p. Show that
E[max(X?2,Y?)] <1+ /1 — p? Hint : use that max(a,b) = (a + b+ |a — b|)/2 for any a,b € R.

Solution:

E(max{X? Y?}) = %E(XQ +Y?) + %E\(X —Y)(X+Y)|

<14 3 VE(X -~ VBE(X + 7))

=14 VB2 =14V P,

where we have used the Cauchy-Schwarz inequality.

e) Let X = (X1,X2) and Y = (Y7,Y2) be two Gaussian random vectors. Is it true that X +Y =
(X1 + Y7, X2 4+ Ys) is a Gaussian random vector?

Solution: The statement is not true in general. The sum of two Gaussian vectors is a Gaussian
vector if they are jointly Gaussian (for instance, if they are independent), but this is not guaranteed
by the premises.

Counterexample: Let X; ~ N(0,1) be a standard normal random variable. Let S be an inde-
pendent random variable, with P(S =1) =P(S = —-1) = 1/2.



Define the vectors X and Y as follows:

X =(X1,0) and Y =(0,5X,)
First, we show that both X and Y are Gaussian vectors.

e For vector X = (X1,0), any linear combination of its components is aX; +b-0 = aX;, which
is a normal random variable (possibly degenerate if a = 0). Thus, X is a Gaussian vector.

e For vector Y = (0, SX1), we first check the distribution of the component Y5 = SX;. For any
y € R, the CDF is P(SX; < y) = sP(X1 < y) + 3P(—X1 < y) = L@(y) + 3P(X1 > —y) =
$®(y) + ®(y) = ®(y), where @ is the standard normal CDF. So Y, ~ A(0,1). Any linear
combination of the components of Y is a -0+ b(SX;) = bSX;, which is a normal random
variable. Thus, Y is a Gaussian vector.

Now, consider the sum vector Z = X 4+ Y
Z = (X1,5Xy)

To check if Z is a Gaussian vector, we examine a linear combination of its components, for example,
their sum Z; + Z3 = X1 + SX1 = X1(1 4+ S). The random variable (1 4+ S) takes the value 2 with
probability 1/2 (when S = 1) and the value 0 with probability 1/2 (when S = —1). Therefore, the
distribution of X;(1+ .S) is a mixture: it is the random variable 2X; with probability 1/2 and the
constant 0 with probability 1/2. This distribution is not normal (it has a point mass at 0). Since
not all linear combinations of the components of Z are normally distributed, Z = X + Y is not a
Gaussian vector.

f) Suppose that X and Y are i.i.d. random variables with mean 0 and variance 1. Can it be the

X\;%Y has the same distribution as X7

case that

Solution: Yes. Let X and Y be Gaussian random variables. Since they are independent, they
form are Gaussian vector. Hence, X +Y ~ N(0,v/2) and X—\EY ~ N(0,1). X—\;%Y has the same
distribution as X.

Exercise 2. (16 points)

Part 1. Preliminaries Consider the sequences of random variables {U, },>1 and {W,, },>1, and
random variables U and W, all defined on the same probability space (€2, F,P).

a) Show that if W, LN ¢, where ¢ is a constant, then W, 5 e
n—oo n—oo

Solution: Since W), L\ ¢, we have P(X,, <z) > 0if z < cand P(X,, <) — 1 if 2 > ¢. This

n—oo
implies, for any € > 0,

P(|Xp, —c|>¢)=P(X, >c+e)+P(X, <c—e)
<1-P(X, <c+e)+P(X, <c—¢) — 0.

n—oo

P
Thus, W,, — c.
n—oo



Slutsky’s theorem: Suppose that

U—>UandW—>c

n—oo

where c¢ is a constant. Then, Slutsky’s theorem says that
DU W, % U and i) Uy +W, % c+U.
n—oo n—oo

b) Argue that Slutsky’s theorem cannot be true under a more general convergence condition

Wi 5w tis enough to provide a counterexample for either i) or ii).
n—oo

Solution: One possible counter example is as follows. Let W be a non-zero, symmetrically dis-
tributed random variable. Let W,, = W and U, = —W. Then W, L W and U, 4w
— n—o0

n o
However, W,, + U,, = 0 for all n, and this does not converge in distribution to 2W.

c) Show that if U, é U then f(Uy,) % f(U) for any continuous function f. Hint: If g(x) is a

continuous and bounded function, and f(x) is a continuous function, then g(f(x)) is a continuous
and bounded function.

Solution: We know from class notes that U, i) U if and only if E(g(U,)) = E(g(U)) for all

—00

continuous and bounded U. This implies that IE( (f(Un))) = E(g(f(U))) for all continuous and

bounded g¢. This, in turn, implies that f(U,) n:d>oo f(U).

Part 2. (Self-Centralized Central Limit Theorem) Let {X}};>; be i.i.d. random variables
with mean zero and finite variance o? = E[X?]. Consider the sums

n n Sn
Sn:ZXk, Vn: <ZX]§) y and Tn:W
k=1 k=1 Va

Sn

no?

d) Determine the limiting distribution of

Solution: By the Central Limit Theorem, since the X} are i.i.d. with mean 0 and finite variance
= E[X 12]7

n o1 X
S _ Zk_l k i>Z,
vVno? vVno?

Thus the limiting distribution of S,,/vno? is standard normal.

Z ~ N(0,1).

% 5V for some random variable V? If yes, what is V7

e) Does
n—o0

Solution: By the Weak Law of Large Numbers, applied to the nonnegative random variables X l%
which have mean o2 (i.e. E(|Xy|) < 00),

Va 1 < 9 P 9
Vo _L§Syar
o4



f) Find the limiting distribution of T,,. Hint: You may use any of the results in Part 1 of this
exercise.

Solution: From part (e), we know that

d
N

Vo P V.
N e
n n

We use the result in part (c) with the continuous function f(U,) = o Un'/? to see that

Vi NG
P(8)- 2 b e -

From part (a), this implies that

o/n
v,i/2

We write T;, as a multiplication of two quantities:

Sh S, oyn
T, = = : = U, - Wh.
vi/2 o ovn yl2

From part (d) o‘f% —U, % 7 ~ N(0,1). We found that U\l/g =W, 5 1. Applying the
Vn

product form of Slutsky’s theorem given above, we obtain

T, =UW,%1.2=2

Hence T, LYY (0,1), which completes the proof.

Exercise 3. (16 points) Consider independent random variables {X,,},>1 defined on the same
probability space (€2, F,P), with

P(X,=¢€¢")=e" and P(X,=0)=1-—¢".
a) Compute E (X,,) and Var(X,) for n > 1.

Solution: The random variable X, takes values in {0, e"}. Its expectation is: E[X,] =0 -P(X,, =
0) +e"-P(X, =e") =e"-e ™ = 1. For the variance, we first compute the second moment:

E[X?z] =0*- P(Xn = 0) + (6”)2 . P(Xn = 6”) = 2. e = o,

Thus, the variance is:

b) Show that X,, — 0.

n—o0



Solution: To show convergence in probability to 0, we check the condition lim,, oo P(|X,| > €) =0
for any € > 0. Since X,, > 0, we have |X,| = X,,. For any given € > 0, there exists an integer
N such that for all n > N, e” > e. For such n, the event {X,, > €} is equivalent to {X,, = €"}.
Therefore, for n > N:

P(| X >€) =P(X,=€")=€e"".

As n — oo, e — 0, which proves that X,, — 0 in probability.

c¢) Show that X, = 0 a.s. Hint: consider A, = {X,, # 0}.
n—oo

Solution: Set A,, = {X,, # 0} = {X,, =¢"}. Then P(A4,) =e " and

= SN 1/e 1
ZIP’(AH):Ze :1_1/626_1<oo
n=1 n=1

By the Borel-Cantelli lemma,
P({w: w € A, infinitely often}) = 0.
Hence with probability one, w belongs to only finitely many A, i.e. there exists N(w) such that
for all n > N(w), Xp(w) = 0. Therefore X,, — 0 almost surely.
Define partial sums Y,, = >, X}, for n > 1.

d) Does ¥,, — Y a.s., for some random variable Y7
n—o0

Solution: From (c), we know that for almost every w € Q, the sequence of real numbers (X, (w))n>1
is eventually zero. That is, there exists an N (w) such that X3 (w) = 0 for all £ > N(w). For such
an w, the sequence of partial sums Y, (w) = >"}_; Xi(w) becomes constant for n > N(w):

N(w)
Wz NW), Ya) = Y Xelw) = Vi ).
k=1

An eventually constant sequence is convergent. Therefore, for almost every w, the sequence (Y;,(w))
converges. This means the sequence of random variables (Y},) converges almost surely to a limit,
which we denote by Y = >"77 | Xj.

L .
e) Does Y,, = Y, for some random variable Y7
n—o0

Solution: If (Y;,) converged in L', then the sequence of expectations (E[Y},]) would have to converge

to a finite limit. By linearity of expectation,
n n n

E[Y,] =E ZXk] =Y EX¢]=) 1=n

k=1 k=1 k=

1

Since lim,, o E[Y;] = lim,, ;oo n = +00, the sequence of expectations diverges. Therefore, (Y;,)
does not converge in L'.



