Midterm Exam

Please pay attention to the presentation of your answers (2 points).

Exercise 1. (24 points)

Let $p, q \in [0, 1]$ be two numbers such that p + q = 1 and $(X_n, n \ge 0)$ be a Markov chain with state space $S = \mathbb{Z} \times \{-1, +1\}$ and the following behaviour:

If $X_n = (i, u)$, then $X_{n+1} = (i + u, u)$ with probability p and $X_{n+1} = (i, -u)$ with probability q.

Let us also denote by P the corresponding transition matrix.

a) (3 points) Draw the transition graph of the chain $(X_n, n \ge 0)$.

NB: Of course, only a part of the whole graph can be drawn!

b) (3 points) Depending on the value of $0 \le p \le 1$, describe the equivalence classes of the chain $(X_n, n \ge 0)$.

From now on in this exercise, assume that 0 .

Moreover, for notational simplicity, states of the chain may be written as i, + or i, - for $i \in \mathbb{Z}$.

c) (3 points) What is the periodicity of state 0, +? Justify your answer.

Fact. One can show that $(X_n, n \ge 0)$ is recurrent for every value of 0 .

Bonus (2 points). Provide a (short) intuitive argument why this is the case.

- d) (4 points) Here is another fact: one can show that if π were a stationary distribution of the chain, then necessarily $\pi_{i,+} = \pi_{i,-}$ for all $i \in \mathbb{Z}$. Show that this would also imply that $\pi_{i,+} = \pi_{j,+} = \pi_{i,-} = \pi_{j,-}$ for all $i, j \in \mathbb{Z}$.
- e) (3 points) What do you deduce from d) on the positive-recurrence/null-recurrence of the chain?

Let now $(Y_n, n \ge 0)$ be the chain whose transition matrix is given by $Q = P^2$.

- f) (4 points) Compute the entries of the matrix Q.
- g) (4 points) Describe the equivalence classes of the chain $(Y_n, n \ge 0)$.

Hint: For these last two questions, it might help drawing the transition graph of $(Y_n, n \ge 0)$ (but this is not asked).

Exercise 2 (24 points).

Let $(X_n, n \ge 0)$, $(Y_n, n \ge 0)$ be two cyclic and symmetric random walks on the state space $S = \{0, 1, 2, 3, 4\}$ such that

- X_0 and Y_0 take different values (we suppose these to be deterministic);
- X and Y are coupled in the following way: they evolve independently until they meet in a common state; from there on, they evolve together.

Let also d(i,j) denote the cyclic distance between two states $i,j \in S$, that is:

$$d(i, j) = \min\{|i - j|, 5 - |i - j|\}$$

so that for example, d(2,3) = 1, while d(1,4) = 2.

We consider in the following the stochastic process D defined as $(D_n = d(X_n, Y_n), n \ge 0)$.

Fact. The process D is also a Markov chain.

- a) (4 points) Compute the state space of D, as well as its transition matrix P.
- b) (3 points) Compute the equivalence classes of D; which are recurrent/transient?
- c) (4 points) Does D admit a unique stationary distribution π ? If yes, compute it. Is it also a limiting distribution? Justify.
- d) (6 points) Compute the eigenvalues of P.
- e) (3 points) Show that for any probability distribution μ on a state space S containing state 0, it holds that

$$\|\mu - \delta_0\|_{TV} = 1 - \mu_0$$

Fact. In the spirit of what was shown in the lectures (and even if the setup is slightly different here), one can show that there exists a constant C > 0 such that

$$\|\pi^{(n)} - \pi\|_{\text{TV}} \le C \cdot \exp(-\gamma n), \quad \forall n \ge 1$$

where $\pi^{(n)}$ is the distribution of D_n and γ is the spectral gap of the chain.

f) (4 points) From part e) and the above fact, deduce an (interesting) upper bound on

$$\lim_{n\to\infty}\frac{1}{n}\log(\mathbb{P}(X_n\neq Y_n))$$

A numerical value is expected here.

Bonus (2 points). Consider now the stochastic process $(M_n, n \ge 0)$ defined as

$$M_n = \begin{cases} 1 & \text{if } d(X_n, Y_n) \le 1\\ 2 & \text{if } d(X_n, Y_n) > 1 \end{cases}$$

Is this process also a Markov chain? Provide a (short) justification / intuition.