ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Foundations of Data Science Assignment date: Wednesday, November 12th, 2025, 13:15
Fall 2025 Due date: Wednesday, November 12th, 2025, 14:45

Midterm Exam — AAC 231

This exam is open book. No electronic devices of any kind are allowed. There are three
problems. Good luck!

Only answers given on this handout count.

Name:

SCIPER:

Problem 1 /8
Problem 2 / 12
Problem 3 / 10
Total ‘ /30 ‘

Recall: The Beta distribution with parameters o and ( is the probability density function
given by

xa—l —x p—1
pase) = “ )

where B(«, 3) is the beta function defined as

L(a)I'(B)

Ped) = Tazay

The mean of a random variable X with probability density function pas(z) is E[X] = ;53



Problem 1 (DPI for TV distance — 8 pts). Show that the Total Variation Distance satisfies
the Data Processing Inequality. That is, using the definitions given in Lemma 4.3 of the
Lecture Notes: a probability kernel W (y|x), an original distribution P, and the distribution
P whose probability mass function is p(y) = 3., W(y|z)p(z), show that

3(P,Q) < 4(P,Q),
where §(P, Q) denotes the Total Variation distance between P and Q.

Remark: If you refer to class materials, be precise (Theorem or equation numbers, Homework
problem identifiers and so on.) Your overall argument must be complete.

Solution 1. There are several ways in which you can proceed. We provide three different
solutions — challenge: can you come up with even more?

Proof 1. Via the variational representation of TV distance, which is Lemma 4.10 of the
lecture notes.

0(P,Q) = max Ep[f(Y)] - Eglf(¥) (1)
= max > p(y)f(y) - > aw)f ) (2)

= e (Z W@W@)) HOEDS (Z W<y|x>q<x>> ONG)

Y

= Inax SO Wilyle)p(x) f(y) — Wyl)g(z) f(y) (4)

f:Y—[0,1

= mex (Z W(y|:v)f(y)> pla) - (Z W(y\x>f(y)> ) )

J/

=f(x)
= max Ep[f(X)] —Eqlf(X)] (6)

Finally, we observe that if 0 < f(y) <1 for all y, then 0 < f(z) <1 for all x, because

flo) =Y Wyle)fly) <Y W(ylz) =1. (7)

This is the crucial observation here. How do we exploit this observation? We will now
expand the maximization to include all possible functions f(z) satisfying 0 < f(z) < 1
(not only the ones that are of the form f(z) = >, Wiylz)f(y) for some f(y)). Clearly,
expanding the maximization can only increase the value of the maximum, that is,

(P, Q) = | max Enlf(X)] ~ EolF(X) ®)
< max Elf(X)] ~ Eql/ (X)) ©)
~3(P.Q), (10)



where in the last step, we have again used the variational representation of TV distance,
which is Lemma 4.10 of the lecture notes.

Proof 2. Via the triangle inequality (that is, a “pedestrian” proof).

3(P,Q) = Z A(y) (11)
=3 Xy: %: W (y|z)p(x) — zx: W (y|z)q() (12)
= 5 XS Wllote) - ato) (13)
< %ZZ W (yl2)(p(z) — ()] (14)
- %ZZ W yla)] p() — q(a)] (15)
- >3 Wllp(e) = glo) (16)

:_Z<Zwy|x> 2 - 4(o) (17

-~

=1

=2 3 Ipla) — a(x) (18)

= 0(P,Q), (19)

where the inequality step follows from the triangle inequality |a + b| < |a| + |b|.

Proof 3. Via the original definition of TV distance, Definition 4.2 in the lecture notes.

5(P,Q) = axp(S) Q(S) (20)
= glgg;yezsp y) — yezsd(y) (21)
= max 2 ((y) — q(v)) (22)
= max 2 (; W (ylz)(p(x) — q(x))) (23)
= glgg; y; W(ylz)(p(z) — q(z)) (24)

Now comes the tricky step: Like in the lecture notes, let A = {z € X : p(x) > q(z)}.
Consider the last sum over x € X and observe that W (y|z) > 0. Now, we note that all
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x € A contribute non-negatively. But all = ¢ A contribute strictly negatively to the sum.
So, dropping all z € A can only make the sum larger. That is,

5(P,Q) = maXZZW ylx)(p(x) — q(x)) (25)

sy TeEX yeS
< max S Wyl (p(z) - q(x)) (26)
T zeAyeS
=maxy | > Wiyl) | (p(x) - a() (27)
zeA | yeS
<1
= Imax %A(p(l“) —q(z)) (28)
= (p(x) — q()). (29)
€A

To complete the proof, we recall from class that this last sum, for the very particular choice
of the set A that we have made, is precisely the TV distance between P and Q.



Problem 2 (Thompson Sampling for Two-Armed Bernoulli Bandits — 12 pts). Consider the
following two-arm setting:

e Let p; and uo be two independent samples from the uniform distribution on the interval
[0,1]. As in class, denote A = |u; — p2|. But note that we do not know which arm is
better.

e Now, pulling arm a € {1,2} at round ¢ yields a reward

X, ~ Bernoulli(,).

e Let S,(t —1) and F,(t — 1), respectively, denote the number of observed successes
(reward=1) and failures (reward=0) of arm a up to round ¢t —1 (for ¢ =1 and a = 2).

We use the following algorithm ( Thompson Sampling):

At round t =1,2,...:

(a) Sample independently

i\" ~ Beta(l+ S (t — 1), 1+ Fy(t — 1))
i) ~ Beta(l + Sy(t — 1), 1+ Fy(t — 1))

Note: See the exam’s cover page for a reminder about the Beta distribution.
(b) Pull the arm with the larger sample:

A = el
¢ = arg ag?g} He

(c) Observe reward X; € {0,1} from arm A;.

As in class, let T},q(n) denote the number of times the bad arm (the arm with the smaller

value p,) is pulled up to horizon n. As in class, the regret can then be written as R, =
A [E[Tbad(n)] .

Tasks. Answer the following:

(a) [2 points] (Formulation) Recall that the means p, were drawn from a uniform prior
distribution. Suppose by time ¢, arm a has been pulled T,(t) times with S,(¢) successes
and F,(t) failures. Give an expression for the posterior distribution p(f,|S,(t), Fu(t)).
What type of a distribution is it?



(b)

(c)

(d)

(e)

[2 points] (Partition of the time axis) Show that for m > 0
E[T,(n)] < m+ E[# of pulls of arm a after it has already been pulled m times].

(Hint: decompose according to whether T,(t) < m or T,(t) > m, where T,(t) is the
number of pulls of arm a before round ¢.)

[3 points] (Concentration of the Beta posterior) This part is a little more tedious.
You may want to save it for last and first tackle parts (d) and (e). For a constant ¢ > 0
to be chosen later, define
| clogn
me= |

Argue that once arm a has been pulled m times, the posterior distribution you found

in Part (a) is concentrated around the true p,, in the sense that for any ¢ > 0, there
exist constants ¢y, ¢y > 0 such that, for all ¢t with T,(¢) > m,

P(AS > pa+e | Hia) < crexp(—ea Tu(t) %),

P(a < pio — e | Hioy) < crexp(—ca Tu(t) %),
where as in class, we are using H;_; to denote the entire history up to time ¢ — 1, that
is, Hyy = (A1, X1, A2, Xoy oo, A1, Xi).

Hint: Calculate fi,; := [E[ﬂ((f) | H;_1]. Then, as in class, split by conditioning onto the
events G, and G%, where Gy = {|fias — ,ua| <<}l

[3 points| (Bounding the selection of the suboptimal arm) Use the previous item
with € = A/2. For large enough ¢ (when both arms have been pulled m times), provide
an upper bound for the probability that we select the bad arm,

[FD(At = bad | Ht—l)
in terms of some constant ¢ > 0,A and n.

[2 points| (Final bound on E[T},q(n)]) Pick a large enough ¢ and conclude that

clogn
A2

[E[Tbad(n)] S + 0(1),

and hence the regret of Thompson Sampling in this two-armed Bernoulli bandit is
bounded by

Ry = AE[Tha(n)] = O (bi") .



Solution 2. (a) Model and conjugacy. For arm a € {1,2} put prior pu, ~ Beta(1,1)
with density
p(,ua) =1, Ha € (07 1)'
If by time ¢ arm a has been pulled N,(t) times with S,(t) successes and F,(t) failures,
the likelihood is
p(data | pa) = g0 (1 = )"0

Bayes’ rule gives

p(data | p1a) p(a)
o pldata | 1) plys)

P(pa | data) =

Substituting the prior and likelihood,

Sa(t) (1 _ Fa(t)
pa" (1 — piq)
p(ta | data) = — ( :
O (1 — p) O dpy

0

The denominator is the normalizing constant (partition function):

1
7= / pH O = ) dp = B(1 + Sa(t), 1+ Fu(1)),
0

where B(-,-) is the Beta function.

Thus,
1

B(1+S,(t), 1+ F.(t))
which is the density of Beta(l + S,(t), 1+ F,(t)).

)Fa(t).

p(pa | data) = par (1 = pg

(b) Time partition. Count separately the pulls of arm 2 made before it has been pulled
m times, and those after. Before reaching m pulls, arm 2 can be pulled at most m times.
Hence

No(n) <m+ > 1{A, =2}

tZNQ(t*l)zm

Taking expectations gives the desired inequality.
(c) Concentration. After Ny(t) = m pulls of arm 2, its posterior is
pz | Fi ~ Beta(l + 53(t),1 + Fy(1)),

Our goal is to show that there exist universal constants ¢; = 3e and ¢y = % such that for
every ¢ € (0,1) and every m > 1,

P(fm > o + 5) < g GXP(—CQW%Q), (30)

and the same holds for arm 1.



Proof. Fix € € (0,1) and m > 1. Write

S0 1650
e " m+2

Note that pu,, is exactly the posterior mean of Beta(1l + Sy(t), 1 + Fy(t)).
We now split according to a good empirical event. Define the “good” event
. €
Gm = {|ﬂm — M2 < Z} .

By Hoeffding’s inequality for Bernoulli variables,

P(G%) =P (\ﬂm — o] > Z) < 2exp (—Qm (Z)Z) = 2exp (—%52) . (31)

We want to bound P(fiy > ps + €). Split:

P(fiz > p2 +€) =P(fia > po + &, Gp) + P(fi > po + ¢, G)
<P(fiz > po + €, Gm) +P(GY,). (32)

Next, we control the posterior mean on the good event. On G,, we have

| —M2‘<§
m ST
Since
:l—I—SQ(t): m +;
" m+ 2 m+2"" " m+2’
we can bound, on G,,,
mo 1
| — pi2| = g otm T T
m . 1
_m—_i_2|ﬂm_,u2 +m—+2
€ 1
~ 4 m+2

Now distinguish two sub-cases on G, .

. Then - <

Case A: m > >

YIS

g
5, hence on Gy,

IS
’,Um - ,u2| S 5 (33)

In particular,

£



Next, we use the fact that Beta is sub-Gaussian around its mean. Conditioned on Ss(?)
(equivalently on F;_; in the bandit notation), we have

fia | S2(t) ~ Beta(1 + Sa(t), 1+ Fa(t)),

with total mass
(1+S5(t)) + (14 Fu(t)) =m+ 2.

A standard Chernoff/Hoeffding-type bound for the Beta distribution (it can be proved, e.g.,
by viewing Beta as a normalized Gamma/Binomial, or by log-concavity) states that there
exists an absolute constant C' > 0 such that for all u € (0,1),

P(fi2 — pm > u| S2(t)) < exp(—C(m+2)u?). (34)
We now wrap up Case A. On G,, and for m > 4/e, we can use (33) and (34) with u = ¢/2
to get
P(fia > pote|Sa(t)) < P(fiz > pm+¢/2] S2(t)) < exp(—C(m+2)(g/2)*) < exp(—C'me?),
for some C' = C'/4. Taking expectation over Sy(t) but keeping G,,,
P(fi2 > po + e, G) < exp(—C'me?). (35)
Plugging (35) and (31) into (32), we get for m > 4/¢,

2 me

2
P(fi2 > iz +€) < 2exp (—%) + exp(—C'me?) < 3exp <_T) ,

after adjusting constants (take co = 1/8).
Case B: 1 <m < g. In this regime we simply use the trivial bound
P(/lg > 2 —|—€) <1.

At the same time, since m < 4/¢,

o (25 ) zew (S ) e (-5) 2 e

me?
1 < 3e-exp <—7) .

Hence

Therefore, for all 1 < m < 4/¢ the desired bound

. me?
P(fi2 > pia + ) < 3e - exp (—?>

9



also holds.

Finally, we unify the two cases. Combining Case A and Case B, we have shown that for
every m > 1 and every ¢ € (0,1),

me?

P2 > ps +¢) < 3e-exp (—?) :

This proves (30) with ¢; = 3e and ¢, = L. O

[ed]

(d) Bounding suboptimal selection. Choose ¢ = A/2. Then, using

(i > 7"y C {ad > o+ A2y Ul < iy — A2},
we get

A? A?
P(A; =2 | Fi_1) <crexp (—CZmT) + c1 exp (—CQmI> .

Since m = (logn)/A?, the first term is at most n~ for some ¢, > 0. Under TS, the

optimal arm 1 is also pulled Q(logn) times, so the second term is at most n~. Hence

/

P(At =2 ‘ «Ft—l) < n-°
for some ¢ > 0.

(e) Final bound. Summing over ¢,

E[# of pulls of arm 2 after m | < Zn_cl =0(1) (ford >1).

t=1

Therefore

E[N,(n)] < m + O(L) = O (lof;’) ,

and

E[Regret(n)] = AE[Ny(n)] = O (loi") .

10



Problem 3 (Fisher goes Beta — 10 pts). In this problem, we will establish a few properties of
the Beta(a, m) distribution when m is an integer. See the exam’s cover page for a reminder
about the Beta distribution.

Hint: Recall from Homework 4 that for any = > 0, we have zI'(x) = I'(z + 1), and that
r'o)=1.

(a) [3 points|] Let X ~ Beta(a, m), where m is a positive integer. For o > 0, find
E [log X].

Hint: Try finding E,., [%logpaym(X)}. If finding the expectation for a general m
seems too difficult, try m = 1,2 first.

(b) [3 points] Show that, for any parametric family of density functions py(x) such that
the support is independent of 6, the Fisher information

1(0) = —E Lf; log pg(X)] .

(c) [4 points] Using part (b), show that for X ~ Beta(a,m) for a fixed integer m > 0,
whenever « € (0,1),

1_}_7r2
6

I(a) < =

Solution 3. First, we explicitly derive the density function of the Beta(a, m) distribution.
Since T'(a+ 1) = al'(@), we have T'(a +m) = [[["5 (o +4)['(a). Therefore,

['(m)

B(a,m) = —————.
( ) I[Z (a+1)

Thus,
m—1
Pa2 = H o+ 1) 1 =)™ (36)
=0

(a) Using (36), we have

Eom {% logpmm(X)} =FEom % ((a —1)log X +mlog(l — X) + Zlog a+i)—T'(m )>]
- me1 .
=FE.m logX—i-ZooH_Z,
-
=Fqmllog X| + -
~ ot



Notice that I'(m) is a constant w.r.t. a and therefore will disappear. By Lemma 6.3 in the
lecture notes, the LHS above is equal to 0 (since it is the expected value of the score function
l(a) = Eqm|dlog pam(X)/dz], and therefore the result is proved.

Alternate solution: We can also proceed directly without the help of the hint, but the
approach is a little more tricky and tedious.

From the definition of the expectation,

EoallosX] = [ logapun(o)ds
z€[0,1]

1 1
:/ log z - (a41)-2* Y1 — 2)™dw
z€[0,1] ’

I'(m) 24
1 m mila 1 og T T 1 X
=] oo 0 (Q )l )>d

(a) 1 d (T d T
& — (1 =—2)" [ — a+i) -zt -2t — a+1) | dr
/xE[OJ] I'(m) ( ) (da (‘o( ) ) da i:()( )>

d 1 m—1
= — | — a+i)- 21— 2)" | da
/a:E[O 1] da (P(m) 10( ) ( ) )
1 . d m—1
- 7 (1l —x)"™ - — a—+1)-de
/xe[o 1] ['(m) ( ) do z0< )
m—1
() d / 1 a—1 m
=— — || (a+3) -2 (1 — x)"dx
da z€[0,1] ['(m) i—0
R / 1 )
- — a+1)- 247 (1 — 2)"dx
da 120( ) acE[O,l] L(m) ( )
() d

Steps (a) and (¢) follow from the product rule of derivatives, step (b) follows after inter-
change of the derivative and the integral, and we use the fact that p,..(z) integrates to 1
in step (c).

12



(b) From class, we know that the score is defined as

d /
(0) = 5 log po() = i—z (37)

Now, taking the second derivative, we can write by the usual chain rule for derivatives (and
more precisely, the quotient rule)

d2 p”pg - (p/ )2
1 — 0 0
g7 s pole) = S (38)

1" 7\ 2
- () 2

Taking expected values, and using the linearity of expectation,

E d—2210gp9($) =E L —E Vs 2 (40)
do Do Do

For the first summand, we may proceed like in class,

E {’ﬁ} - / pg(ﬂ:)pggx)da: (41)

Po po(T)
:/%pg(aﬁ)dm (42)
= 6%22 po(z)dx (43)
= @ 1 44
- & (44)
= 0. (45)

Py

. Therefore,
Po

For the second summand, we recall that the score can be written as £(0) =
we know that

Do

E {j—; logpg(x)} =—E [(29—3)2] = —E [*(0)] = —1I, (46)

(As a side note, we point out that the multi-dimensional version of the lemma can be found
as Lemma 6.5 in the lecture notes, but we did not cover this part in class.)

(c) We already know that - log p, »(z) = logz + St L.

we find that it does not, in fact, depend on x, and therefore, its expectation is also simply

Taking the second derivative,

m—1

d? 1 > 1
Eam ——1 o X - N S X
’ daz 8P 2 )} Z (a+1)? Z (a+1)?

1=0




