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Recall: The Beta distribution with parameters α and β is the probability density function

given by

pα,β(x) =
xα−1(1− x)β−1

B(α, β)

where B(α, β) is the beta function defined as

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

The mean of a random variable X with probability density function pα,β(x) is E[X] = α
α+β

.



Problem 1 (DPI for TV distance – 8 pts). Show that the Total Variation Distance satisfies

the Data Processing Inequality. That is, using the definitions given in Lemma 4.3 of the

Lecture Notes: a probability kernel W (y|x), an original distribution P, and the distribution

P̃ whose probability mass function is p̃(y) =
∑

x W (y|x)p(x), show that

δ(P̃ , Q̃) ≤ δ(P,Q),

where δ(P,Q) denotes the Total Variation distance between P and Q.

Remark: If you refer to class materials, be precise (Theorem or equation numbers, Homework

problem identifiers and so on.) Your overall argument must be complete.

Solution 1. There are several ways in which you can proceed. We provide three different

solutions — challenge: can you come up with even more?

Proof 1. Via the variational representation of TV distance, which is Lemma 4.10 of the

lecture notes.

δ(P̃ , Q̃) = max
f :Y→[0,1]

EP̃ [f(Y )]− EQ̃[f(Y )] (1)

= max
f :Y→[0,1]

∑
y

p̃(y)f(y)−
∑
y

q̃(y)f(y) (2)

= max
f :Y→[0,1]

∑
y

(∑
x

W (y|x)p(x)

)
f(y)−

∑
y

(∑
x

W (y|x)q(x)

)
f(y) (3)

= max
f :Y→[0,1]

∑
x

∑
y

W (y|x)p(x)f(y)−W (y|x)q(x)f(y) (4)

= max
f :Y→[0,1]

∑
x

(∑
y

W (y|x)f(y)

)
︸ ︷︷ ︸

=f̃(x)

p(x)−

(∑
y

W (y|x)f(y)

)
q(x) (5)

= max
f :Y→[0,1]

EP [f̃(X)]− EQ[f̃(X)]. (6)

Finally, we observe that if 0 ≤ f(y) ≤ 1 for all y, then 0 ≤ f̃(x) ≤ 1 for all x, because

f̃(x) =
∑
y

W (y|x)f(y) ≤
∑
y

W (y|x) = 1. (7)

This is the crucial observation here. How do we exploit this observation? We will now

expand the maximization to include all possible functions f̃(x) satisfying 0 ≤ f̃(x) ≤ 1

(not only the ones that are of the form f̃(x) =
∑

y W (y|x)f(y) for some f(y) ). Clearly,

expanding the maximization can only increase the value of the maximum, that is,

δ(P̃ , Q̃) = max
f :Y→[0,1]

EP [f̃(X)]− EQ[f̃(X)] (8)

≤ max
f̃ :X→[0,1]

EP [f̃(X)]− EQ[f̃(X)] (9)

= δ(P,Q), (10)
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where in the last step, we have again used the variational representation of TV distance,

which is Lemma 4.10 of the lecture notes.

Proof 2. Via the triangle inequality (that is, a “pedestrian” proof).

δ(P̃ , Q̃) =
1

2

∑
y

|p̃(y)− q̃(y)| (11)

=
1

2

∑
y

∣∣∣∣∣∑
x

W (y|x)p(x)−
∑
x

W (y|x)q(x)

∣∣∣∣∣ (12)

=
1

2

∑
y

∣∣∣∣∣∑
x

W (y|x)(p(x)− q(x))

∣∣∣∣∣ (13)

≤ 1

2

∑
y

∑
x

|W (y|x)(p(x)− q(x))| (14)

=
1

2

∑
y

∑
x

|W (y|x)| |p(x)− q(x)| (15)

=
1

2

∑
y

∑
x

W (y|x)|p(x)− q(x)| (16)

=
1

2

∑
x

(∑
y

W (y|x)

)
︸ ︷︷ ︸

=1

|p(x)− q(x)| (17)

=
1

2

∑
x

|p(x)− q(x)| (18)

= δ(P,Q), (19)

where the inequality step follows from the triangle inequality |a+ b| ≤ |a|+ |b|.

Proof 3. Via the original definition of TV distance, Definition 4.2 in the lecture notes.

δ(P̃ , Q̃) = max
S⊆Y

P̃ (S)− Q̃(S) (20)

= max
S⊆Y

∑
y∈S

p̃(y)−
∑
y∈S

q̃(y) (21)

= max
S⊆Y

∑
y∈S

(p̃(y)− q̃(y)) (22)

= max
S⊆Y

∑
y∈S

(∑
x∈X

W (y|x)(p(x)− q(x))

)
(23)

= max
S⊆Y

∑
x∈X

∑
y∈S

W (y|x)(p(x)− q(x)) (24)

Now comes the tricky step: Like in the lecture notes, let A = {x ∈ X : p(x) ≥ q(x)}.
Consider the last sum over x ∈ X and observe that W (y|x) ≥ 0. Now, we note that all
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x ∈ A contribute non-negatively. But all x ̸∈ A contribute strictly negatively to the sum.

So, dropping all x ̸∈ A can only make the sum larger. That is,

δ(P̃ , Q̃) = max
S⊆Y

∑
x∈X

∑
y∈S

W (y|x)(p(x)− q(x)) (25)

≤ max
S⊆Y

∑
x∈A

∑
y∈S

W (y|x)(p(x)− q(x)) (26)

= max
S⊆Y

∑
x∈A


∑
y∈S

W (y|x)︸ ︷︷ ︸
≤1

 (p(x)− q(x)) (27)

= max
S⊆Y

∑
x∈A

(p(x)− q(x)) (28)

=
∑
x∈A

(p(x)− q(x)). (29)

To complete the proof, we recall from class that this last sum, for the very particular choice

of the set A that we have made, is precisely the TV distance between P and Q.
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Problem 2 (Thompson Sampling for Two-Armed Bernoulli Bandits – 12 pts). Consider the

following two-arm setting:

• Let µ1 and µ2 be two independent samples from the uniform distribution on the interval

[0, 1]. As in class, denote ∆ = |µ1 − µ2|. But note that we do not know which arm is

better.

• Now, pulling arm a ∈ {1, 2} at round t yields a reward

Xt ∼ Bernoulli(µa).

• Let Sa(t − 1) and Fa(t − 1), respectively, denote the number of observed successes

(reward=1) and failures (reward=0) of arm a up to round t−1 (for a = 1 and a = 2).

We use the following algorithm (Thompson Sampling):

At round t = 1, 2, . . . :

(a) Sample independently

µ̃
(t)
1 ∼ Beta(1 + S1(t− 1), 1 + F1(t− 1))

µ̃
(t)
2 ∼ Beta(1 + S2(t− 1), 1 + F2(t− 1))

Note: See the exam’s cover page for a reminder about the Beta distribution.

(b) Pull the arm with the larger sample:

At = arg max
a∈{1,2}

µ̃(t)
a .

(c) Observe reward Xt ∈ {0, 1} from arm At.

As in class, let Tbad(n) denote the number of times the bad arm (the arm with the smaller

value µa ) is pulled up to horizon n . As in class, the regret can then be written as Rn =

∆ E[Tbad(n)].

Tasks. Answer the following:

(a) [2 points] (Formulation) Recall that the means µa were drawn from a uniform prior

distribution. Suppose by time t, arm a has been pulled Ta(t) times with Sa(t) successes

and Fa(t) failures. Give an expression for the posterior distribution p(µa|Sa(t), Fa(t)).

What type of a distribution is it?
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(b) [2 points] (Partition of the time axis) Show that for m > 0

E[Ta(n)] ≤ m+ E
[
# of pulls of arm a after it has already been pulled m times

]
.

(Hint: decompose according to whether Ta(t) < m or Ta(t) ≥ m , where Ta(t) is the

number of pulls of arm a before round t .)

(c) [3 points] (Concentration of the Beta posterior) This part is a little more tedious.

You may want to save it for last and first tackle parts (d) and (e). For a constant c > 0

to be chosen later, define

m :=

⌈
c log n

∆2

⌉
.

Argue that once arm a has been pulled m times, the posterior distribution you found

in Part (a) is concentrated around the true µa , in the sense that for any ε > 0 , there

exist constants c1, c2 > 0 such that, for all t with Ta(t) ≥ m ,

P
(
µ̃(t)
a > µa + ε | Ht−1

)
≤ c1 exp

(
−c2 Ta(t) ε

2
)
,

P
(
µ̃(t)
a < µa − ε | Ht−1

)
≤ c1 exp

(
−c2 Ta(t) ε

2
)
,

where as in class, we are using Ht−1 to denote the entire history up to time t− 1, that

is, Ht−1 = (A1, X1, A2, X2, . . . , At−1, Xt−1).

Hint: Calculate µ̂a,t := E[µ̃
(t)
a | Ht−1]. Then, as in class, split by conditioning onto the

events Ga and Gc
a, where Ga :=

{∣∣µ̂a,t − µa

∣∣ ≤ ε
4

}
.

(d) [3 points] (Bounding the selection of the suboptimal arm) Use the previous item

with ε = ∆/2. For large enough t (when both arms have been pulled m times), provide

an upper bound for the probability that we select the bad arm,

P(At = bad | Ht−1)

in terms of some constant c′ > 0,∆ and n .

(e) [2 points] (Final bound on E[Tbad(n)]) Pick a large enough c and conclude that

E[Tbad(n)] ≤
c log n

∆2
+O(1),

and hence the regret of Thompson Sampling in this two-armed Bernoulli bandit is

bounded by

Rn = ∆ E[Tbad(n)] = O

(
log n

∆

)
.
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Solution 2. (a) Model and conjugacy. For arm a ∈ {1, 2} put prior µa ∼ Beta(1, 1)

with density

p(µa) = 1, µa ∈ (0, 1).

If by time t arm a has been pulled Na(t) times with Sa(t) successes and Fa(t) failures,

the likelihood is

p(data | µa) = µSa(t)
a (1− µa)

Fa(t).

Bayes’ rule gives

p(µa | data) =
p(data | µa) p(µa)∫ 1

0
p(data | µ) p(µ) dµ

.

Substituting the prior and likelihood,

p(µa | data) =
µ
Sa(t)
a (1− µa)

Fa(t)∫ 1

0

µSa(t)(1− µ)Fa(t) dµ

.

The denominator is the normalizing constant (partition function):

Z =

∫ 1

0

µSa(t)(1− µ)Fa(t) dµ = B(1 + Sa(t), 1 + Fa(t)),

where B(·, ·) is the Beta function.

Thus,

p(µa | data) =
1

B(1 + Sa(t), 1 + Fa(t))
µSa(t)
a (1− µa)

Fa(t).

which is the density of Beta(1 + Sa(t), 1 + Fa(t)) .

(b) Time partition. Count separately the pulls of arm 2 made before it has been pulled

m times, and those after. Before reaching m pulls, arm 2 can be pulled at most m times.

Hence

N2(n) ≤ m+
∑

t:N2(t−1)≥m

1{At = 2}.

Taking expectations gives the desired inequality.

(c) Concentration. After N2(t) = m pulls of arm 2, its posterior is

µ2 | Ft ∼ Beta(1 + S2(t), 1 + F2(t)),

with S2(t) + F2(t) = m .

Our goal is to show that there exist universal constants c1 = 3e and c2 = 1
8
such that for

every ε ∈ (0, 1) and every m ≥ 1 ,

P
(
µ̃2 > µ2 + ε

)
≤ c1 exp

(
−c2mε2

)
, (30)

and the same holds for arm 1.
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Proof. Fix ε ∈ (0, 1) and m ≥ 1 . Write

µ̂m :=
S2(t)

m
and µm :=

1 + S2(t)

m+ 2
.

Note that µm is exactly the posterior mean of Beta(1 + S2(t), 1 + F2(t)) .

We now split according to a good empirical event. Define the “good” event

Gm :=
{∣∣µ̂m − µ2

∣∣ ≤ ε

4

}
.

By Hoeffding’s inequality for Bernoulli variables,

P(Gc
m) = P

(∣∣µ̂m − µ2

∣∣ > ε

4

)
≤ 2 exp

(
−2m

(ε
4

)2)
= 2 exp

(
−mε2

8

)
. (31)

We want to bound P(µ̃2 > µ2 + ε) . Split:

P(µ̃2 > µ2 + ε) = P(µ̃2 > µ2 + ε, Gm) + P(µ̃2 > µ2 + ε, Gc
m)

≤ P(µ̃2 > µ2 + ε, Gm) + P(Gc
m). (32)

Next, we control the posterior mean on the good event. On Gm we have

|µ̂m − µ2| ≤
ε

4
.

Since

µm =
1 + S2(t)

m+ 2
=

m

m+ 2
µ̂m +

1

m+ 2
,

we can bound, on Gm ,

|µm − µ2| =
∣∣∣∣ m

m+ 2
µ̂m +

1

m+ 2
− µ2

∣∣∣∣
≤ m

m+ 2

∣∣µ̂m − µ2

∣∣+ 1

m+ 2

≤ ε

4
+

1

m+ 2
.

Now distinguish two sub-cases on Gm .

Case A: m ≥ 4
ε
. Then 1

m+2
≤ ε

4
, hence on Gm ,

|µm − µ2| ≤
ε

2
. (33)

In particular,

µ2 + ε ≥ µm +
ε

2
.
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Next, we use the fact that Beta is sub-Gaussian around its mean. Conditioned on S2(t)

(equivalently on Ft−1 in the bandit notation), we have

µ̃2 | S2(t) ∼ Beta
(
1 + S2(t), 1 + F2(t)

)
,

with total mass

(1 + S2(t)) + (1 + F2(t)) = m+ 2.

A standard Chernoff/Hoeffding-type bound for the Beta distribution (it can be proved, e.g.,

by viewing Beta as a normalized Gamma/Binomial, or by log-concavity) states that there

exists an absolute constant C > 0 such that for all u ∈ (0, 1) ,

P
(
µ̃2 − µm ≥ u

∣∣S2(t)
)

≤ exp
(
−C(m+ 2)u2

)
. (34)

We now wrap up Case A. On Gm and for m ≥ 4/ε , we can use (33) and (34) with u = ε/2

to get

P
(
µ̃2 > µ2+ε

∣∣S2(t)
)
≤ P

(
µ̃2 > µm+ε/2

∣∣S2(t)
)
≤ exp

(
−C(m+2)(ε/2)2

)
≤ exp

(
−C ′mε2

)
,

for some C ′ = C/4 . Taking expectation over S2(t) but keeping Gm ,

P
(
µ̃2 > µ2 + ε, Gm

)
≤ exp

(
−C ′mε2

)
. (35)

Plugging (35) and (31) into (32), we get for m ≥ 4/ε ,

P(µ̃2 > µ2 + ε) ≤ 2 exp

(
−mε2

8

)
+ exp

(
−C ′mε2

)
≤ 3 exp

(
−mε2

8

)
,

after adjusting constants (take c2 = 1/8).

Case B: 1 ≤ m < 4
ε
. In this regime we simply use the trivial bound

P(µ̃2 > µ2 + ε) ≤ 1.

At the same time, since m < 4/ε ,

exp

(
−mε2

8

)
≥ exp

(
−(4/ε)ε2

8

)
= exp

(
−ε

2

)
≥ e−1/2.

Hence

1 ≤ 3e · exp
(
−mε2

8

)
.

Therefore, for all 1 ≤ m < 4/ε the desired bound

P(µ̃2 > µ2 + ε) ≤ 3e · exp
(
−mε2

8

)
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also holds.

Finally, we unify the two cases. Combining Case A and Case B, we have shown that for

every m ≥ 1 and every ε ∈ (0, 1) ,

P(µ̃2 > µ2 + ε) ≤ 3e · exp
(
−mε2

8

)
.

This proves (30) with c1 = 3e and c2 =
1
8
.

(d) Bounding suboptimal selection. Choose ε = ∆/2 . Then, using

{µ̃(t)
2 > µ̃

(t)
1 } ⊆ {µ̃(t)

2 > µ2 +∆/2} ∪ {µ̃(t)
1 < µ1 −∆/2},

we get

P(At = 2 | Ft−1) ≤ c1 exp

(
−c2m

∆2

4

)
+ c1 exp

(
−c2m

∆2

4

)
.

Since m ≍ (log n)/∆2 , the first term is at most n−c′1 for some c′1 > 0 . Under TS, the

optimal arm 1 is also pulled Ω(log n) times, so the second term is at most n−c′2 . Hence

P(At = 2 | Ft−1) ≤ n−c′

for some c′ > 0 .

(e) Final bound. Summing over t ,

E
[
# of pulls of arm 2 after m

]
≤

n∑
t=1

n−c′ = O(1) (for c′ > 1).

Therefore

E[N2(n)] ≤ m+O(1) = O

(
log n

∆2

)
,

and

E[Regret(n)] = ∆ E[N2(n)] = O

(
log n

∆

)
.
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Problem 3 (Fisher goes Beta – 10 pts). In this problem, we will establish a few properties of

the Beta(α,m) distribution when m is an integer. See the exam’s cover page for a reminder

about the Beta distribution.

Hint: Recall from Homework 4 that for any x > 0 , we have xΓ(x) = Γ(x + 1), and that

Γ(0) = 1 .

(a) [3 points] Let X ∼ Beta(α,m), where m is a positive integer. For α > 0 , find

E [logX] .

Hint: Try finding Eα,m
[

d
dα

log pα,m(X)
]
. If finding the expectation for a general m

seems too difficult, try m = 1, 2 first.

(b) [3 points] Show that, for any parametric family of density functions pθ(x) such that

the support is independent of θ , the Fisher information

I(θ) = −Eθ
[
d2

dθ2
log pθ(X)

]
.

(c) [4 points] Using part (b), show that for X ∼ Beta(α,m) for a fixed integer m > 0 ,

whenever α ∈ (0, 1) ,

I(α) ≤ 1

α2
+

π2

6
.

Solution 3. First, we explicitly derive the density function of the Beta(α,m) distribution.

Since Γ(α + 1) = αΓ(α) , we have Γ(α +m) =
∏m−1

i=0 (α + i)Γ(α) . Therefore,

B(α,m) =
Γ(m)∏m−1

i=0 (α + i)
.

Thus,

pα,2 =
1

Γ(m)

m−1∏
i=0

(α + i) · xα−1(1− x)m. (36)

(a) Using (36), we have

Eα,m

[
d

dα
log pα,m(X)

]
=Eα,m

[
d

dα

(
(α− 1) logX +m log(1−X) +

m−1∑
i=0

log(α + i)− Γ(m)

)]

=Eα,m

[
logX +

m−1∑
i=0

1

α + i

]

=Eα,m[logX] +
m−1∑
i=0

1

α + i
.
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Notice that Γ(m) is a constant w.r.t. α and therefore will disappear. By Lemma 6.3 in the

lecture notes, the LHS above is equal to 0 (since it is the expected value of the score function

ℓ(α) = Eα,m[d log pα,m(X)/dx] , and therefore the result is proved.

Alternate solution: We can also proceed directly without the help of the hint, but the

approach is a little more tricky and tedious.

From the definition of the expectation,

Eα,2[logX] =

∫
x∈[0,1]

log x · pα,m(x)dx

=

∫
x∈[0,1]

log x · 1

Γ(m)

m−1∏
i=0

(α + i) · xα−1(1− x)mdx

=

∫
x∈[0,1]

1

Γ(m)
· (1− x)m

(
m−1∏
i=0

(α + i) · (log x · xα−1)

)
dx

=

∫
x∈[0,1]

1

Γ(m)
· (1− x)m

(
m−1∏
i=0

(α + i) · d

dα
xα−1

)
dx

(a)
=

∫
x∈[0,1]

1

Γ(m)
· (1− x)m

(
d

dα

(
m−1∏
i=0

(α + i) · xα−1

)
− xα−1 · d

dα

m−1∏
i=0

(α + i)

)
dx

=

∫
x∈[0,1]

d

dα

(
1

Γ(m)
·
m−1∏
i=0

(α + i) · xα−1(1− x)m

)
dx

−
∫
x∈[0,1]

1

Γ(m)
· xα−1(1− x)m · d

dα

m−1∏
i=0

(α + i) · dx

(b)
=

d

dα

∫
x∈[0,1]

1

Γ(m)
·
m−1∏
i=0

(α + i) · xα−1(1− x)mdx

− d

dα

m−1∏
i=0

(α + i) ·
∫
x∈[0,1]

1

Γ(m)
· xα−1(1− x)mdx

(c)
=

d

dα
(1)− 1∏m−1

i=0 (α + i)
·
m−1∑
i=0

∏
j∈[0:m−1]\{i}

(α + j)

=−
m−1∑
i=0

1

α + i
.

Steps (a) and (c) follow from the product rule of derivatives, step (b) follows after inter-

change of the derivative and the integral, and we use the fact that pα,m(x) integrates to 1

in step (c) .
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(b) From class, we know that the score is defined as

ℓ(θ) =
d

dθ
log pθ(x) =

p′θ
pθ

(37)

Now, taking the second derivative, we can write by the usual chain rule for derivatives (and

more precisely, the quotient rule)

d2

dθ2
log pθ(x) =

p′′θpθ − (p′θ)
2

(pθ)2
(38)

=
p′′θ
pθ

−
(
p′θ
pθ

)2

(39)

Taking expected values, and using the linearity of expectation,

E

[
d2

dθ2
log pθ(x)

]
= E

[
p′′θ
pθ

]
− E

[(
p′θ
pθ

)2
]

(40)

For the first summand, we may proceed like in class,

E

[
p′′θ
pθ

]
=

∫
pθ(x)

p′′θ(x)

pθ(x)
dx (41)

=

∫
d2

dθ2
pθ(x)dx (42)

=
d2

dθ2

∫
pθ(x)dx (43)

=
d2

dθ2
1 (44)

= 0. (45)

For the second summand, we recall that the score can be written as ℓ(θ) =
p′θ
pθ
. Therefore,

we know that

E

[
d2

dθ2
log pθ(x)

]
= −E

[(
p′θ
pθ

)2
]
= −E

[
ℓ2(θ)

]
= −Iθ, (46)

(As a side note, we point out that the multi-dimensional version of the lemma can be found

as Lemma 6.5 in the lecture notes, but we did not cover this part in class.)

(c) We already know that d
dα

log pα,2(x) = log x+
∑m−1

i=0
1

α+i
. Taking the second derivative,

we find that it does not, in fact, depend on x , and therefore, its expectation is also simply

Eα,m

[
− d2

dα2
log pα,2(X)

]
=

m−1∑
i=0

1

(α + i)2
≤

∞∑
i=0

1

(α + i)2

≤ 1

α2
+

∞∑
i=1

1

i2
≤ 1

α2
+

π2

6
.
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