Solution to Additional exercises to test yourself
Introduction to Quantum Information Processing

Exercise 1 Entropy of reduced states for mixed global states

a) The equality
S(pa) = S(ps)

holds only when the global state pap is pure. If pap is mixed, this equality generally does
not hold. In other words, for a mixed state, the reduced density matrices p4 = Trg(pas)
and pp = Tra(pap) may have different von Neumann entropies.

b) Consider a 2-qubit system with the following mixed state:

(100)¢00[ + [01)(01]).
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PAB =

Compute the reduced density matrices:

(10)(0] + |0)(0]) = |0){0],

1
pa = Trp(pas) = 3

(10)0] + 1) (1)) = 31z
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pp = Tra(pas) =

Now compute the von Neumann entropies:

S(pa) = —Tr(palog pa) = —Tr(|0)(0] log |0)(0[) = 0,

1 1
S(pg) = —Tr (512 log 5]2) =log2=1.
Therefore, we have an explicit example of a mixed state p4p where
S(pa) # S(pp).

Exercise 2 Basis changes

a) The Hadamard basis (also called the |4),|—) basis) is defined as

_ o+ 0=
H_>_ \/5 ) ’ >_ \/5 :



b) The 2-qubit Hadamard basis is obtained by taking tensor products of the single-qubit
Hadamard basis:

{010, [0 =) [ =) =)}

Using the hint, for any orthonormal basis {|¢;)}:

) =D (i) |6)-

)

Denote the 2-qubit Hadamard basis as:
01) = [-0)+), o2) = |H)=), s) = [2)14), [94) = |=)]—-).

Thanks to the hint, the expansion of |¢)) in this basis is:

4

) =) (dilh) |¢n).

=1

First, let’s write the Hadamard states in the computational basis:

)14 = 5(100) +[01) + [10) + 1)),

)1=) = 3(100) — fo1) +[10) — 1)),

=)+) = 3(100) + fo1) 10 — 1),

)= = 5(100) ~ [01) ~ 10} + J11)).
Then the coefficients are

c1 = (p1]v) = %(331 + 2y + 13 + 74),
1

cy = (P2|V)) = 5(331 — Ty + 13 — 1),

cs = (ps3lY)) = %(5131 + 1y — 13 — 14),

1
ey = (Palt)) = 5(561 — Ty — T3 + 14).
giving the Hadamard-basis expansion:

1Y) = c1]1) + c2|d2) + c3|ds) + cal@a).
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c)

(Bonus) Let {|¢:)}7, be an orthonormal basis of an m-dimensional Hilbert space H.
Then any [¢)) € H can be decomposed in this basis as

m

) = Z a;| i)

i=1
for some coefficients «; € C.

Using the orthonormality of the basis, (¢;|¢;) = d;;, we compute
(9;1¥) = Z&l<¢J’¢Z> = Z a;0j; = Q.
i=1 i=1

Therefore, the coefficients are
a; = (Pi|v),
which gives

) = (ile) |6)-

=1

Exercise 3 Criterion for pure states

a)

b)

= : If p is pure, then p = |¢) (1| for some state |1)). Then

Pt = ()WDY (W]) = [V}l = p,

so Tr(p?) = Tr(p) = 1.

< ¢ if Tr(p?) = 1, write p in its eigenbasis p = Y, A;|i) (| where A; > 0 and Y, \; =1
since p is hermitian and semi positive definite. Then

Tr(p®) = Z)\? = 1.

Since Y, \; = 1, the only way >, \? = 1 is if one eigenvalue is 1 and all others are 0.
Hence p = |i)(i| is pure.

If the global state pap is pure, then the purities of the reduced states are equal: Tr(p?) =
Tr(p%). Any pure state [1) 45 admits a Schmidt decomposition

Wyag = VAili)a® |i)s,
=1
with A; >0, >>. A\; = 1. Then
pa =Y Mli)ila,  ps =Y Nli){ils.

Hence, p4 and pp have the same eigenvalues {\;}, and therefore Tr(p%) = >_.\? =
Tr(p%).



Example where this is not the case: consider the mixed state

pas =1 |00><00|+ 01)01]| =

S O ONi
O O O
o O O O
o O O O

Then

pa=Tealpan) =001 = (5 1) o= Tealoan) = 57 = (

O NI
= O
N—

Compute the purities:

Hence, Tr(p%) # Tr(p%).
Exercise 4 Measurement

a) Consider the two-qubit state
|00) — |11)

[¥) = 7

We want to compute the expectation value of the observable X ® Z, where X acts on
the first qubit and Z on the second. The expectation value is

(XZ) =Wl X0 Zp).

First, compute X ® Z [¢):

X Z19) = <=((X © 2) [00) — (X © 2)[11) = (110} +]01)),

Sl
%I

Then,

(X®Z) = %((om — (11)(J10) + |01)) = = ({00]10) — (11|10} + (00[01) — (11]01)) = 0.
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b) Now consider the mixed state

p=p [UX$]+ (1= p) [0X0] @ [+)+]

For |¢) = IOO% and |0+) =]0) ® 9+ “the matrix forms are:

2
1 0 0 -1 1100
1 0O 0 0 O 1100
-1 0 0 1 0 00O



Thus, the density matrix p is

1 1—p 0 —p
1|1-p 1=p 0 0
P=51 o 0 0 0

—p 0 0 p

The expectation value is

(X©2),=Tr(p(X © 2)) = pTr(|o}o] (X ® 2)) +(1 — p) Tr(|0X0] @ [+)}{+] (X © Z)).

~
=0 by a)

For the second term, we have
Tr(JO)0] @ [+X+| (X @ Z)) = Tr(J0X1| @ |[+)X—|) = Tr([0X1]) Tr(|+)X~[) = 0.
Thus for all p, the expectation value is zero.
Exercise 5 Hermitian Operators and Tensor Products

Let A and B be Hermitian operators acting on 2-dimensional Hilbert spaces H; and Has,
respectively.

a) We can look at the coefficients of the matrix A ® B in the computational basis. The
matrix elements are given by (ij| A ® B|kl) = (i| A|k) (j| B|l). Taking the Hermitian
conjugate, we have

(i (A® B)'[kl)) = ((Kl| (A® B)[ij))" = ((k[ Ali) (1] B15))" = (k| AlD)*({1] B5))"
(il AT|R)) ({1 BT [1)) = (ij] (AT ® BT) [kl) .

Since A and B are Hermitian, A" = A and BT = B. Therefore,
(ij| (A® B)' |kl) = (ij| A® Bkl),
and all matrix elements of (A ® B)' equal those of A ® B. Hence, A ® B is Hermitian.

b) Suppose [1)) € H; is an eigenvector of A with eigenvalue A, and |¢) € H, is an eigenvector
of B with eigenvalue p. Then

(A® B)([¢) @ |¢)) = (Aly)) @ (Bl¢)) = (M) @ (ul9)) = (Au)([9) @ |9)).

Hence, [1)) ® |¢) is an eigenvector of A ® B with eigenvalue A\p.
The tensor product A ® B has dim(H;) x dim(Hs) eigenvalues in total.

() -0
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c) Let



Check Hermiticity:

1 =z 01
T — T _
A_<—z' 1>—A, B—(1 0)—B.

So both A and B are Hermitian.
Compute A ® B:

0O 1 0 =

1-B i-B 10 @0
A®B_((—i)-B 1-3)— 0 —i 01
10

Check Hermiticity of A ® B:

(A B)! = = A® B,

)

|

SN
— O = O
O = O =

which confirms that A ® B is Hermitian.

d) The eigenvalues of A are {0,2} and those of B are {—1,1}. The eigenvalues of A ® B
are the products of the eigenvalues of A and B : {—2,0,0,2}.

Exercise 6 Partial Measurement
Consider the three-qubit state
o) — %( 001) + €/4]011) — 100) + [010) ).
We measure only the second qubit (middle qubit) in the computational basis {|0),|1)}.

a) Define the projectors:

Ph=1®|0)(0|®l, P=Ix|)(1xI.

The probability to measure qubit 2 in state |0) is

p(0) = (V| R [) .
Apply By to |W¥): it keeps only terms where the second qubit is 0:
1
Po [¥) = 5(]001) —[100)).

Thus,
p(0) = (V[ R |¥) =

P
o]
[\)



Similarly, the probability to measure qubit 2 in state |1) is

1 .
Py |U) = 5(6”/4 |011) + [010)),

p(1) = (V| A W) =

Verification: )

mm+mnzl+§=L

2
b) After measuring qubit 2 with outcome 0, the state collapses to
Py|¥)  3(l0o1) — [100))

Vo) V12 f

After measuring qubit 2 with outcome 1, the state collapses to

[Wo) = —(]001) — [100)).

W) 3(010) + €7/ f011))
|\111> = =

T 7 (|010> + ™1 011)).

5l

c) e For |Uy):

1 1 1
EOOOD_HOO» = %(IOM 10)2 [1)5=11)110), 10)5) = E(Ioh [1)5=[1)1 10)5)©]0), -

The state of qubits 1 and 3 is a Bell state —= (|01> |10)), which is entangled.
e For |U,):

|Wo) =

i €i7r/4 — L eiw/4
\/5(’010>+ 011)) = [0); @ [1), ® \/5(|0>3+ [1)3)-

The state of qubits 1 and 3 is separable: 0); ® -5(|0); + e/t (1),).

[y) =



