
Solution to Additional exercises to test yourself
Introduction to Quantum Information Processing

Exercise 1 Entropy of reduced states for mixed global states

a) The equality

S(ρA) = S(ρB)

holds only when the global state ρAB is pure. If ρAB is mixed, this equality generally does
not hold. In other words, for a mixed state, the reduced density matrices ρA = TrB(ρAB)
and ρB = TrA(ρAB) may have different von Neumann entropies.

b) Consider a 2-qubit system with the following mixed state:

ρAB =
1

2
(|00⟩⟨00|+ |01⟩⟨01|) .

Compute the reduced density matrices:

ρA = TrB(ρAB) =
1

2
(|0⟩⟨0|+ |0⟩⟨0|) = |0⟩⟨0|,

ρB = TrA(ρAB) =
1

2
(|0⟩⟨0|+ |1⟩⟨1|) = 1

2
I2.

Now compute the von Neumann entropies:

S(ρA) = −Tr(ρA log ρA) = −Tr(|0⟩⟨0| log |0⟩⟨0|) = 0,

S(ρB) = −Tr

(
1

2
I2 log

1

2
I2

)
= log 2 = 1.

Therefore, we have an explicit example of a mixed state ρAB where

S(ρA) ̸= S(ρB).

Exercise 2 Basis changes

a) The Hadamard basis (also called the |+⟩, |−⟩ basis) is defined as

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

.
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b) The 2-qubit Hadamard basis is obtained by taking tensor products of the single-qubit
Hadamard basis:

{|+⟩|+⟩, |+⟩|−⟩, |−⟩|+⟩, |−⟩|−⟩}.

Using the hint, for any orthonormal basis {|ϕi⟩}:

|ψ⟩ =
∑
i

⟨ϕi|ψ⟩ |ϕi⟩.

Denote the 2-qubit Hadamard basis as:

|ϕ1⟩ = |+⟩|+⟩, |ϕ2⟩ = |+⟩|−⟩, |ϕ3⟩ = |−⟩|+⟩, |ϕ4⟩ = |−⟩|−⟩.

Thanks to the hint, the expansion of |ψ⟩ in this basis is:

|ψ⟩ =
4∑

i=1

⟨ϕi|ψ⟩ |ϕi⟩.

First, let’s write the Hadamard states in the computational basis:

|+⟩|+⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩),

|+⟩|−⟩ = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩),

|−⟩|+⟩ = 1

2
(|00⟩+ |01⟩ − |10⟩ − |11⟩),

|−⟩|−⟩ = 1

2
(|00⟩ − |01⟩ − |10⟩+ |11⟩).

Then the coefficients are

c1 = ⟨ϕ1|ψ⟩ =
1

2
(x1 + x2 + x3 + x4),

c2 = ⟨ϕ2|ψ⟩ =
1

2
(x1 − x2 + x3 − x4),

c3 = ⟨ϕ3|ψ⟩ =
1

2
(x1 + x2 − x3 − x4),

c4 = ⟨ϕ4|ψ⟩ =
1

2
(x1 − x2 − x3 + x4).

giving the Hadamard-basis expansion:

|ψ⟩ = c1|ϕ1⟩+ c2|ϕ2⟩+ c3|ϕ3⟩+ c4|ϕ4⟩.
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c) (Bonus) Let {|ϕi⟩}mi=1 be an orthonormal basis of an m-dimensional Hilbert space H.
Then any |ψ⟩ ∈ H can be decomposed in this basis as

|ψ⟩ =
m∑
i=1

αi|ϕi⟩

for some coefficients αi ∈ C.
Using the orthonormality of the basis, ⟨ϕj|ϕi⟩ = δij, we compute

⟨ϕj|ψ⟩ =
m∑
i=1

αi⟨ϕj|ϕi⟩ =
m∑
i=1

αiδji = αj.

Therefore, the coefficients are
αi = ⟨ϕi|ψ⟩,

which gives

|ψ⟩ =
m∑
i=1

⟨ϕi|ψ⟩ |ϕi⟩.

Exercise 3 Criterion for pure states

a) ⇒ : If ρ is pure, then ρ = |ψ⟩⟨ψ| for some state |ψ⟩. Then

ρ2 = (|ψ⟩⟨ψ|)(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| = ρ,

so Tr(ρ2) = Tr(ρ) = 1.

⇐ : if Tr(ρ2) = 1, write ρ in its eigenbasis ρ =
∑

i λi|i⟩⟨i| where λi ≥ 0 and
∑

i λi = 1
since ρ is hermitian and semi positive definite. Then

Tr
(
ρ2
)
=

∑
i

λ2i = 1.

Since
∑

i λi = 1, the only way
∑

i λ
2
i = 1 is if one eigenvalue is 1 and all others are 0.

Hence ρ = |i⟩⟨i| is pure.

b) If the global state ρAB is pure, then the purities of the reduced states are equal: Tr(ρ2A) =
Tr(ρ2B). Any pure state |ψ⟩AB admits a Schmidt decomposition

|ψ⟩AB =
r∑

i=1

√
λi |i⟩A ⊗ |i⟩B,

with λi ≥ 0,
∑

i λi = 1. Then

ρA =
∑
i

λi|i⟩⟨i|A, ρB =
∑
i

λi|i⟩⟨i|B.

Hence, ρA and ρB have the same eigenvalues {λi}, and therefore Tr(ρ2A) =
∑

i λ
2
i =

Tr(ρ2B).
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Example where this is not the case: consider the mixed state

ρAB =
1

2
|00⟩⟨00|+ 1

2
|01⟩⟨01| =


1
2

0 0 0
0 1

2
0 0

0 0 0 0
0 0 0 0

 .

Then

ρA = TrB(ρAB) = |0⟩⟨0| =
(
1 0
0 0

)
, ρB = TrA(ρAB) =

1

2
I =

(
1
2

0
0 1

2

)
.

Compute the purities:

Tr
(
ρ2A

)
= 1, Tr

(
ρ2B

)
=

1

2
.

Hence, Tr(ρ2A) ̸= Tr(ρ2B).

Exercise 4 Measurement

a) Consider the two-qubit state

|ψ⟩ = |00⟩ − |11⟩√
2

.

We want to compute the expectation value of the observable X ⊗ Z, where X acts on
the first qubit and Z on the second. The expectation value is

⟨XZ⟩ = ⟨ψ|X ⊗ Z |ψ⟩ .

First, compute X ⊗ Z |ψ⟩:

X ⊗ Z |ψ⟩ = 1√
2
((X ⊗ Z) |00⟩ − (X ⊗ Z) |11⟩ = 1√

2
(|10⟩+ |01⟩).

Then,

⟨X ⊗ Z⟩ = 1

2
(⟨00| − ⟨11|)(|10⟩+ |01⟩) = 1

2
(⟨00|10⟩ − ⟨11|10⟩+ ⟨00|01⟩ − ⟨11|01⟩) = 0.

b) Now consider the mixed state

ρ = p |ψ⟩⟨ψ|+ (1− p) |0⟩⟨0| ⊗ |+⟩⟨+|

For |ψ⟩ = |00⟩−|11⟩√
2

and |0+⟩ = |0⟩ ⊗ |0⟩+|1⟩√
2

, the matrix forms are:

|ϕ⟩⟨ϕ| = 1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 , |0+⟩⟨0+| = 1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 .
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Thus, the density matrix ρ is

ρ =
1

2


1 1− p 0 −p

1− p 1− p 0 0
0 0 0 0
−p 0 0 p

 .

The expectation value is

⟨X ⊗ Z⟩ρ = Tr(ρ (X ⊗ Z)) = pTr(|ϕ⟩⟨ϕ| (X ⊗ Z))︸ ︷︷ ︸
=0 by a)

+(1− p) Tr(|0⟩⟨0| ⊗ |+⟩⟨+| (X ⊗ Z)).

For the second term, we have

Tr(|0⟩⟨0| ⊗ |+⟩⟨+| (X ⊗ Z)) = Tr(|0⟩⟨1| ⊗ |+⟩⟨−|) = Tr(|0⟩⟨1|) Tr(|+⟩⟨−|) = 0.

Thus for all p, the expectation value is zero.

Exercise 5 Hermitian Operators and Tensor Products

Let A and B be Hermitian operators acting on 2-dimensional Hilbert spaces H1 and H2,
respectively.

a) We can look at the coefficients of the matrix A ⊗ B in the computational basis. The
matrix elements are given by ⟨ij|A ⊗ B |kl⟩ = ⟨i|A |k⟩ ⟨j|B |l⟩. Taking the Hermitian
conjugate, we have

(⟨ij| (A⊗B)† |kl⟩) = (⟨kl| (A⊗B) |ij⟩)∗ = (⟨k|A |i⟩ ⟨l|B |j⟩)∗ = (⟨k|A |i⟩)∗(⟨l|B |j⟩)∗

= (⟨i|A† |k⟩)(⟨j|B† |l⟩) = ⟨ij| (A† ⊗B†) |kl⟩ .

Since A and B are Hermitian, A† = A and B† = B. Therefore,

⟨ij| (A⊗B)† |kl⟩ = ⟨ij|A⊗B |kl⟩ ,

and all matrix elements of (A⊗B)† equal those of A⊗B. Hence, A⊗B is Hermitian.

b) Suppose |ψ⟩ ∈ H1 is an eigenvector of A with eigenvalue λ, and |ϕ⟩ ∈ H2 is an eigenvector
of B with eigenvalue µ. Then

(A⊗B)(|ψ⟩ ⊗ |ϕ⟩) = (A|ψ⟩)⊗ (B|ϕ⟩) = (λ|ψ⟩)⊗ (µ|ϕ⟩) = (λµ)(|ψ⟩ ⊗ |ϕ⟩).

Hence, |ψ⟩ ⊗ |ϕ⟩ is an eigenvector of A⊗B with eigenvalue λµ.

The tensor product A⊗B has dim(H1)× dim(H2) eigenvalues in total.

c) Let

A =

(
1 i
−i 1

)
, B =

(
0 1
1 0

)
.
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Check Hermiticity:

A† =

(
1 i
−i 1

)
= A, B† =

(
0 1
1 0

)
= B.

So both A and B are Hermitian.

Compute A⊗B:

A⊗B =

(
1 ·B i ·B

(−i) ·B 1 ·B

)
=


0 1 0 i
1 0 i 0
0 −i 0 1
−i 0 1 0

 .

Check Hermiticity of A⊗B:

(A⊗B)† =


0 1 0 i
1 0 i 0
0 −i 0 1
−i 0 1 0

 = A⊗B,

which confirms that A⊗B is Hermitian.

d) The eigenvalues of A are {0, 2} and those of B are {−1, 1}. The eigenvalues of A ⊗ B
are the products of the eigenvalues of A and B : {−2, 0, 0, 2}.

Exercise 6 Partial Measurement

Consider the three-qubit state

|Ψ⟩ = 1

2

(
|001⟩+ eiπ/4 |011⟩ − |100⟩+ |010⟩

)
.

We measure only the second qubit (middle qubit) in the computational basis {|0⟩ , |1⟩}.

a) Define the projectors:

P0 = I ⊗ |0⟩ ⟨0| ⊗ I, P1 = I ⊗ |1⟩ ⟨1| ⊗ I.

The probability to measure qubit 2 in state |0⟩ is

p(0) = ⟨Ψ|P0 |Ψ⟩ .

Apply P0 to |Ψ⟩: it keeps only terms where the second qubit is 0:

P0 |Ψ⟩ = 1

2
(|001⟩ − |100⟩).

Thus,

p(0) = ⟨Ψ|P0 |Ψ⟩ = 1

4
+

1

4
=

1

2
.
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Similarly, the probability to measure qubit 2 in state |1⟩ is

P1 |Ψ⟩ = 1

2
(eiπ/4 |011⟩+ |010⟩),

p(1) = ⟨Ψ|P1 |Ψ⟩ = 1

4
+

1

4
=

1

2
.

Verification:

p(0) + p(1) =
1

2
+

1

2
= 1.

b) After measuring qubit 2 with outcome 0, the state collapses to

|Ψ0⟩ =
P0 |Ψ⟩√
p(0)

=
1
2
(|001⟩ − |100⟩)√

1/2
=

1√
2
(|001⟩ − |100⟩).

After measuring qubit 2 with outcome 1, the state collapses to

|Ψ1⟩ =
P1 |Ψ⟩√
p(1)

=
1
2
(|010⟩+ eiπ/4 |011⟩)√

1/2
=

1√
2
(|010⟩+ eiπ/4 |011⟩).

c) • For |Ψ0⟩:

|Ψ0⟩ =
1√
2
(|001⟩−|100⟩) = 1√

2
(|0⟩1 |0⟩2 |1⟩3−|1⟩1 |0⟩2 |0⟩3) =

1√
2
(|0⟩1 |1⟩3−|1⟩1 |0⟩3)⊗|0⟩2 .

The state of qubits 1 and 3 is a Bell state 1√
2
(|01⟩ − |10⟩), which is entangled.

• For |Ψ1⟩:

|Ψ1⟩ =
1√
2
(|010⟩+ eiπ/4 |011⟩) = |0⟩1 ⊗ |1⟩2 ⊗

1√
2
(|0⟩3 + eiπ/4 |1⟩3).

The state of qubits 1 and 3 is separable: |0⟩1 ⊗
1√
2
(|0⟩3 + eiπ/4 |1⟩3).
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