Solution to Additional exercises to test yourself Introduction to Quantum Information Processing

Exercise 1 Entropy of reduced states for mixed global states

a) The equality

$$S(\rho_A) = S(\rho_B)$$

holds only when the global state ρ_{AB} is pure. If ρ_{AB} is mixed, this equality generally does not hold. In other words, for a mixed state, the reduced density matrices $\rho_A = \text{Tr}_B(\rho_{AB})$ and $\rho_B = \text{Tr}_A(\rho_{AB})$ may have different von Neumann entropies.

b) Consider a 2-qubit system with the following mixed state:

$$\rho_{AB} = \frac{1}{2} \left(|00\rangle\langle 00| + |01\rangle\langle 01| \right).$$

Compute the reduced density matrices:

$$\rho_A = \operatorname{Tr}_B(\rho_{AB}) = \frac{1}{2} (|0\rangle\langle 0| + |0\rangle\langle 0|) = |0\rangle\langle 0|,$$

$$\rho_B = \text{Tr}_A(\rho_{AB}) = \frac{1}{2} (|0\rangle\langle 0| + |1\rangle\langle 1|) = \frac{1}{2} I_2.$$

Now compute the von Neumann entropies:

$$S(\rho_A) = -\text{Tr}(\rho_A \log \rho_A) = -\text{Tr}(|0\rangle\langle 0| \log |0\rangle\langle 0|) = 0,$$

$$S(\rho_B) = -\text{Tr}\left(\frac{1}{2}I_2\log\frac{1}{2}I_2\right) = \log 2 = 1.$$

Therefore, we have an explicit example of a mixed state ρ_{AB} where

$$S(\rho_A) \neq S(\rho_B)$$
.

Exercise 2 Basis changes

a) The Hadamard basis (also called the $|+\rangle$, $|-\rangle$ basis) is defined as

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

b) The 2-qubit Hadamard basis is obtained by taking tensor products of the single-qubit Hadamard basis:

$$\{|+\rangle|+\rangle, |+\rangle|-\rangle, |-\rangle|+\rangle, |-\rangle|-\rangle\}.$$

Using the hint, for any orthonormal basis $\{|\phi_i\rangle\}$:

$$|\psi\rangle = \sum_{i} \langle \phi_i | \psi \rangle | \phi_i \rangle.$$

Denote the 2-qubit Hadamard basis as:

$$|\phi_1\rangle = |+\rangle|+\rangle, \quad |\phi_2\rangle = |+\rangle|-\rangle, \quad |\phi_3\rangle = |-\rangle|+\rangle, \quad |\phi_4\rangle = |-\rangle|-\rangle.$$

Thanks to the hint, the expansion of $|\psi\rangle$ in this basis is:

$$|\psi\rangle = \sum_{i=1}^{4} \langle \phi_i | \psi \rangle | \phi_i \rangle.$$

First, let's write the Hadamard states in the computational basis:

$$|+\rangle|+\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle),$$

$$|+\rangle|-\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle),$$

$$|-\rangle|+\rangle = \frac{1}{2}(|00\rangle + |01\rangle - |10\rangle - |11\rangle),$$

$$|-\rangle|-\rangle = \frac{1}{2}(|00\rangle - |01\rangle - |10\rangle + |11\rangle).$$

Then the coefficients are

$$c_1 = \langle \phi_1 | \psi \rangle = \frac{1}{2} (x_1 + x_2 + x_3 + x_4),$$

$$c_2 = \langle \phi_2 | \psi \rangle = \frac{1}{2} (x_1 - x_2 + x_3 - x_4),$$

$$c_3 = \langle \phi_3 | \psi \rangle = \frac{1}{2} (x_1 + x_2 - x_3 - x_4),$$

$$c_4 = \langle \phi_4 | \psi \rangle = \frac{1}{2} (x_1 - x_2 - x_3 + x_4).$$

giving the Hadamard-basis expansion:

$$|\psi\rangle = c_1|\phi_1\rangle + c_2|\phi_2\rangle + c_3|\phi_3\rangle + c_4|\phi_4\rangle.$$

c) (Bonus) Let $\{|\phi_i\rangle\}_{i=1}^m$ be an orthonormal basis of an m-dimensional Hilbert space \mathcal{H} . Then any $|\psi\rangle \in \mathcal{H}$ can be decomposed in this basis as

$$|\psi\rangle = \sum_{i=1}^{m} \alpha_i |\phi_i\rangle$$

for some coefficients $\alpha_i \in \mathbb{C}$.

Using the orthonormality of the basis, $\langle \phi_i | \phi_i \rangle = \delta_{ii}$, we compute

$$\langle \phi_j | \psi \rangle = \sum_{i=1}^m \alpha_i \langle \phi_j | \phi_i \rangle = \sum_{i=1}^m \alpha_i \delta_{ji} = \alpha_j.$$

Therefore, the coefficients are

$$\alpha_i = \langle \phi_i | \psi \rangle,$$

which gives

$$|\psi\rangle = \sum_{i=1}^{m} \langle \phi_i | \psi \rangle | \phi_i \rangle.$$

Exercise 3 Criterion for pure states

a) \Rightarrow : If ρ is pure, then $\rho = |\psi\rangle\langle\psi|$ for some state $|\psi\rangle$. Then

$$\rho^2 = (|\psi\rangle\langle\psi|)(|\psi\rangle\langle\psi|) = |\psi\rangle\langle\psi| = \rho,$$

so $Tr(\rho^2) = Tr(\rho) = 1$.

 \Leftarrow : if $\text{Tr}(\rho^2) = 1$, write ρ in its eigenbasis $\rho = \sum_i \lambda_i |i\rangle\langle i|$ where $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$ since ρ is hermitian and semi positive definite. Then

$$\operatorname{Tr}(\rho^2) = \sum_i \lambda_i^2 = 1.$$

Since $\sum_i \lambda_i = 1$, the only way $\sum_i \lambda_i^2 = 1$ is if one eigenvalue is 1 and all others are 0. Hence $\rho = |i\rangle\langle i|$ is pure.

b) If the global state ρ_{AB} is pure, then the purities of the reduced states are equal: $\text{Tr}(\rho_A^2) = \text{Tr}(\rho_B^2)$. Any pure state $|\psi\rangle_{AB}$ admits a Schmidt decomposition

$$|\psi\rangle_{AB} = \sum_{i=1}^{r} \sqrt{\lambda_i} |i\rangle_A \otimes |i\rangle_B,$$

with $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$. Then

$$\rho_A = \sum_i \lambda_i |i\rangle\langle i|_A, \qquad \rho_B = \sum_i \lambda_i |i\rangle\langle i|_B.$$

Hence, ρ_A and ρ_B have the same eigenvalues $\{\lambda_i\}$, and therefore $\text{Tr}(\rho_A^2) = \sum_i \lambda_i^2 = \text{Tr}(\rho_B^2)$.

Example where this is not the case: consider the mixed state

$$\rho_{AB} = \frac{1}{2} |00\rangle\langle 00| + \frac{1}{2} |01\rangle\langle 01| = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then

$$\rho_A = \operatorname{Tr}_B(\rho_{AB}) = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \rho_B = \operatorname{Tr}_A(\rho_{AB}) = \frac{1}{2}I = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

Compute the purities:

$$\operatorname{Tr}(\rho_A^2) = 1, \qquad \operatorname{Tr}(\rho_B^2) = \frac{1}{2}.$$

Hence, $\operatorname{Tr}(\rho_A^2) \neq \operatorname{Tr}(\rho_B^2)$.

Exercise 4 Measurement

a) Consider the two-qubit state

$$|\psi\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}.$$

We want to compute the expectation value of the observable $X \otimes Z$, where X acts on the first qubit and Z on the second. The expectation value is

$$\langle XZ \rangle = \langle \psi | X \otimes Z | \psi \rangle$$
.

First, compute $X \otimes Z | \psi \rangle$:

$$X \otimes Z |\psi\rangle = \frac{1}{\sqrt{2}} ((X \otimes Z) |00\rangle - (X \otimes Z) |11\rangle = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle).$$

Then,

$$\langle X \otimes Z \rangle = \frac{1}{2} (\langle 00| - \langle 11|)(|10\rangle + |01\rangle) = \frac{1}{2} (\langle 00|10\rangle - \langle 11|10\rangle + \langle 00|01\rangle - \langle 11|01\rangle) = 0.$$

b) Now consider the mixed state

$$\rho = p |\psi\rangle\langle\psi| + (1-p) |0\rangle\langle0| \otimes |+\rangle\langle+|$$

For $|\psi\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$ and $|0+\rangle = |0\rangle \otimes \frac{|0\rangle + |1\rangle}{\sqrt{2}}$, the matrix forms are:

Thus, the density matrix ρ is

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 1-p & 0 & -p \\ 1-p & 1-p & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -p & 0 & 0 & p \end{pmatrix}.$$

The expectation value is

$$\langle X \otimes Z \rangle_{\rho} = \operatorname{Tr}(\rho (X \otimes Z)) = p \underbrace{\operatorname{Tr}(|\phi \rangle \langle \phi| (X \otimes Z))}_{=0 \text{ by a}} + (1 - p) \operatorname{Tr}(|0 \rangle \langle 0| \otimes |+\rangle \langle +| (X \otimes Z)).$$

For the second term, we have

$$\operatorname{Tr}(|0\rangle\langle 0|\otimes |+|\rangle\langle +|(X\otimes Z)) = \operatorname{Tr}(|0\rangle\langle 1|\otimes |+|\rangle\langle -|) = \operatorname{Tr}(|0\rangle\langle 1|)\operatorname{Tr}(|+|\rangle\langle -|) = 0.$$

Thus for all p, the expectation value is zero.

Exercise 5 Hermitian Operators and Tensor Products

Let A and B be Hermitian operators acting on 2-dimensional Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , respectively.

a) We can look at the coefficients of the matrix $A \otimes B$ in the computational basis. The matrix elements are given by $\langle ij | A \otimes B | kl \rangle = \langle i | A | k \rangle \langle j | B | l \rangle$. Taking the Hermitian conjugate, we have

$$(\langle ij | (A \otimes B)^{\dagger} | kl \rangle) = (\langle kl | (A \otimes B) | ij \rangle)^{*} = (\langle k | A | i \rangle \langle l | B | j \rangle)^{*} = (\langle k | A | i \rangle)^{*} (\langle l | B | j \rangle)^{*}$$
$$= (\langle i | A^{\dagger} | k \rangle)(\langle j | B^{\dagger} | l \rangle) = \langle ij | (A^{\dagger} \otimes B^{\dagger}) | kl \rangle.$$

Since A and B are Hermitian, $A^{\dagger} = A$ and $B^{\dagger} = B$. Therefore,

$$\langle ij | (A \otimes B)^{\dagger} | kl \rangle = \langle ij | A \otimes B | kl \rangle,$$

and all matrix elements of $(A \otimes B)^{\dagger}$ equal those of $A \otimes B$. Hence, $A \otimes B$ is Hermitian.

b) Suppose $|\psi\rangle \in \mathcal{H}_1$ is an eigenvector of A with eigenvalue λ , and $|\phi\rangle \in \mathcal{H}_2$ is an eigenvector of B with eigenvalue μ . Then

$$(A \otimes B)(|\psi\rangle \otimes |\phi\rangle) = (A|\psi\rangle) \otimes (B|\phi\rangle) = (\lambda|\psi\rangle) \otimes (\mu|\phi\rangle) = (\lambda\mu)(|\psi\rangle \otimes |\phi\rangle).$$

Hence, $|\psi\rangle \otimes |\phi\rangle$ is an eigenvector of $A\otimes B$ with eigenvalue $\lambda\mu$.

The tensor product $A \otimes B$ has $dim(\mathcal{H}_1) \times dim(\mathcal{H}_2)$ eigenvalues in total.

c) Let

$$A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Check Hermiticity:

$$A^{\dagger} = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} = A, \quad B^{\dagger} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = B.$$

So both A and B are Hermitian.

Compute $A \otimes B$:

$$A \otimes B = \begin{pmatrix} 1 \cdot B & i \cdot B \\ (-i) \cdot B & 1 \cdot B \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & i \\ 1 & 0 & i & 0 \\ 0 & -i & 0 & 1 \\ -i & 0 & 1 & 0 \end{pmatrix}.$$

Check Hermiticity of $A \otimes B$:

$$(A \otimes B)^{\dagger} = \begin{pmatrix} 0 & 1 & 0 & i \\ 1 & 0 & i & 0 \\ 0 & -i & 0 & 1 \\ -i & 0 & 1 & 0 \end{pmatrix} = A \otimes B,$$

which confirms that $A \otimes B$ is Hermitian.

d) The eigenvalues of A are $\{0,2\}$ and those of B are $\{-1,1\}$. The eigenvalues of $A\otimes B$ are the products of the eigenvalues of A and $B: \{-2,0,0,2\}$.

Exercise 6 Partial Measurement

Consider the three-qubit state

$$|\Psi\rangle = \frac{1}{2} \Big(|001\rangle + e^{i\pi/4} |011\rangle - |100\rangle + |010\rangle \Big).$$

We measure only the second qubit (middle qubit) in the computational basis $\{|0\rangle, |1\rangle\}$.

a) Define the projectors:

$$P_0 = I \otimes |0\rangle \langle 0| \otimes I, \quad P_1 = I \otimes |1\rangle \langle 1| \otimes I.$$

The probability to measure qubit 2 in state $|0\rangle$ is

$$p(0) = \langle \Psi | P_0 | \Psi \rangle$$
.

Apply P_0 to $|\Psi\rangle$: it keeps only terms where the second qubit is 0:

$$P_0 |\Psi\rangle = \frac{1}{2}(|001\rangle - |100\rangle).$$

Thus,

$$p(0) = \langle \Psi | P_0 | \Psi \rangle = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Similarly, the probability to measure qubit 2 in state $|1\rangle$ is

$$P_1 |\Psi\rangle = \frac{1}{2} (e^{i\pi/4} |011\rangle + |010\rangle),$$

$$p(1) = \langle \Psi | P_1 | \Psi \rangle = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Verification:

$$p(0) + p(1) = \frac{1}{2} + \frac{1}{2} = 1.$$

b) After measuring qubit 2 with outcome 0, the state collapses to

$$|\Psi_0\rangle = \frac{P_0 |\Psi\rangle}{\sqrt{p(0)}} = \frac{\frac{1}{2}(|001\rangle - |100\rangle)}{\sqrt{1/2}} = \frac{1}{\sqrt{2}}(|001\rangle - |100\rangle).$$

After measuring qubit 2 with outcome 1, the state collapses to

$$|\Psi_1\rangle = \frac{P_1 |\Psi\rangle}{\sqrt{p(1)}} = \frac{\frac{1}{2}(|010\rangle + e^{i\pi/4} |011\rangle)}{\sqrt{1/2}} = \frac{1}{\sqrt{2}}(|010\rangle + e^{i\pi/4} |011\rangle).$$

c) • For $|\Psi_0\rangle$:

$$|\Psi_{0}\rangle = \frac{1}{\sqrt{2}}(|001\rangle - |100\rangle) = \frac{1}{\sqrt{2}}(|0\rangle_{1} |0\rangle_{2} |1\rangle_{3} - |1\rangle_{1} |0\rangle_{2} |0\rangle_{3}) = \frac{1}{\sqrt{2}}(|0\rangle_{1} |1\rangle_{3} - |1\rangle_{1} |0\rangle_{3}) \otimes |0\rangle_{2}.$$

The state of qubits 1 and 3 is a Bell state $\frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$, which is entangled.

• For $|\Psi_1\rangle$:

$$|\Psi_1\rangle = \frac{1}{\sqrt{2}}(|010\rangle + e^{i\pi/4}|011\rangle) = |0\rangle_1 \otimes |1\rangle_2 \otimes \frac{1}{\sqrt{2}}(|0\rangle_3 + e^{i\pi/4}|1\rangle_3).$$

The state of qubits 1 and 3 is separable: $|0\rangle_1 \otimes \frac{1}{\sqrt{2}} (|0\rangle_3 + e^{i\pi/4} |1\rangle_3)$.