
Solution 10
Introduction to Quantum Information Processing

Exercise 1 Errors in the Bloch ball

a) A bit-flip error can be seen as the environment somehow applying a X-gate to the qubit,
transforming our state to

ρb−flip = XρX =
1

2
(I+ r⃗b−flip · σ⃗), (1)

where we defined the bit-flipped Bloch vector as

r⃗b−flip = X(r⃗ · σ)X (2)

= X(rxX + ryY + rzZ)X (3)

= X(rxI− iryZ + irzY ) (4)

= rxX − ryY − rzZ. (5)

We immediately see that, geometrically, a bit-flip is equivalent to two rotations of 180°
about the y- and the z-axis, respectively. Now, if such an event happens with probability
p, then state is described by the following convex combination,

ρ′ = (1− p)ρ+ pXρX =
1

2

[
I+

(
rx, (1− 2p)ry, (1− 2p)rz

)
· σ⃗
]
. (6)

We see that the new Bloch vector is defined as r⃗′ =
(
rx, (1 − 2p)ry, (1 − 2p)rz

)
and

observe that the x-axis remains unaffected.
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Figure 1: Bit-flip error on the Bloch sphere with probability p = 0.4. We can see that the
x-component of the Bloch vector remains unchanged, while the y- and z-components are
scaled by a factor of (1− 2p).
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b) A similar analysis can be done for a phase-flip error, which is described by,

ρp−flip = ZρZ =
1

2
(I+ r⃗p−flip · σ⃗), (7)

where we defined the phase-flip error Bloch vector as,

r⃗p−flip = −rxX − ryY + rzZ. (8)

So, on the Bloch sphere, a phase-flip error corresponds to two rotations of 180° about
the x- and y-axis, respectively. When a phase flip happens with probability p, the state
is therefore described by,

ρ′′ = (1− p)ρ+ pZρZ =
1

2

[
I+

(
(1− 2q)rx, (1− 2q)ry, rz

)
· σ⃗
]
, (9)

with the new Bloch vector r⃗′′ =
(
(1− 2q)rx, (1− 2q)ry, rz

)
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Figure 2: Phase-flip error on the Bloch sphere with probability p = 0.4. We can see that
the x-component of the Bloch vector remains unchanged, while the y- and z-components are
scaled by a factor of (1− 2p).

c) We compute the state obtained after applying the channel, generalizing what we have
seen in a) and b), i.e. that applying a Pauli P leaves the component of the Bloch vector
in that direction unchanged, while doing a rotation of 180° in the two other directions.
So,

E(ρ) = ρ+XρX + Y ρY + ZρZ

4
(10)

=
1

4

(
I+ (rx, ry, rz) · σ⃗

2
+

I+ (rx,−ry, rz) · σ⃗
2

+ (11)

+
I+ (−rx, ry,−rz) · σ⃗

2
+

I+ (−rx,−ry, rz) · σ⃗
2

)
=

I

2
. (12)

This channel maps any 1-qubit state to the fully-mixed state I/2, i.e. to the center of
the Bloch sphere.
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d) A depolarizing channel with probability p is expressed as

E(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ).

We proceed similarly as in c), to express the new Bloch vector r⃗′:

E(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) (13)

= (1− p)
I+ (rx, ry, rz) · σ⃗

2
+

p

3

(
I+ (rx,−ry,−rz) · σ⃗

2
+ (14)

+
I+ (−rx, ry,−rz) · σ⃗

2
+

I+ (−rx,−ry, rz) · σ⃗
2

)
=

1

2

[
I+

(
(1− p)− p

3

)
(rx, ry, rz) · σ⃗

]
(15)

=
1

2

[
I+

(
1− 4p

3

)
r⃗ · σ⃗

]
(16)

=
1

2

[
I+ r⃗′ · σ⃗

]
, (17)

where we defined the new Bloch vector r⃗′ = (1− 4p
3
)r⃗.
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Figure 3: Depolarising noise on the Bloch sphere with probability p = 0.4. All components
of the Bloch vector are scaled by the same factor.

e) We decompose the situation in two sequences. First, we have the probability of having
a bit-flip with probability pX , which affects our state in the following way,

ρ1 = ρ′ =
1

2

[
I+ r⃗′ · σ⃗

]
, (18)

where we reused the result in a), i.e. r⃗′ =
(
r′x, r

′
y, r

′
z

)
=
(
rx, (1 − 2pX)ry, (1 − 2pX)rz

)
.

Second, the qubit has probability of undergoing a phase-flip with probability pZ ; we use
the result from b) but using the components r′x, r

′
y and r′z instead of rx, ry and rz.

ρ2 =
1

2

[
I+

(
(1− 2pZ)r

′
x, (1− 2pZ)r

′
y, r

′
z

)
· σ⃗
]

=
1

2

[
I+

(
(1− 2pZ)rx, (1− 2pZ)(1− 2pX)ry, (1− 2pX)rz

)
· σ⃗
] (19)
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We have seen that in the case of a depolarising noise, in question d), each component of
r⃗ is scaled by the same factor. Thus, we need

1− 2pX = 1− 2pZ = (1− 2pX)(1− 2pZ). (20)

This is true only for pX = pZ = 0 or 1
2
. So there are either no errors or we are in the

case of question c).

f) The Bloch vector after amplitude damping with probability p are rescaled and shifted
toward |0⟩.
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Figure 4: Amplitude damping noise on the Bloch sphere with γ = 0.4.

Exercise 2 Three-qubit repetition code

a) If phase-flip error happens with one of physical qubits:

Z1|0⟩L = Z1|000⟩ = |000⟩ = |0⟩L
Z1|1⟩L = Z1|111⟩ = −|111⟩ = −|1⟩L

Similarly, if an error happens with second and third physical qubit. Since a phase-flip
add only a global phase, it does not add a logical error on the logical states.

For a logical qubit |ϕ⟩ = α|0⟩L + β|1⟩L:

Z1|ϕ⟩ = Z1 (α|000⟩+ β|111⟩) = α|0⟩L − β|1⟩L (21)

Therefore, physical phase flip corresponds to a relative phase flip in a logical qubit.

However, if phase-flip hapens with 2 physical qubits, it doesn’t induce any logical error.
Indeed,

Z1 ⊗ Z2 ⊗ I|0⟩L = Z1 ⊗ Z2 ⊗ I|000⟩ = |0⟩L
Z1 ⊗ Z2 ⊗ I|1⟩L = Z1 ⊗ Z2 ⊗ I|111⟩ = (−1)2|1⟩L

b) If a Y error happens with one of physical qubits:

Y1|0⟩L = Y1|000⟩ = −i|100⟩ = X1|0⟩L
Y1|1⟩L = Y1|111⟩ = i|011⟩ = X1|1⟩L
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Similarly, if an error happens with second and third physical qubit. Up to a global
phase, a Y error is equivalent to a bit flip error X for a logical state.

For a logical qubit, |ϕ⟩ = α|0⟩L + β|1⟩L:

Y1|ϕ⟩ = Y1 (α|000⟩+ β|111⟩) = i(−α|100⟩+ β|011⟩) (22)

Therefore, a physical Y error corresponds to a relative phase flip and a bit flip in a
logical qubit.

c) For depolarizing channel with error probability p, the probabilities of bit flip (X), phase
flip (Z) and Y are p

3
. Since a logical state is not sensible to phase-flip errors and Y errors

are equivalent to bit-flip errors, we can consider only bit-flip errors in the analysis. The
effective physical bit-flip probability per qubit is then:

pX =
2p

3
.

d) • First case: the logical state is unaffected.

The logical state is unaffected if no error occurs. Probability that no error happens
in all 3 physical qubits:

Pno error = (1− pX)
3.

There are also the situations when logical state is unaffected but physical changes.
It happens because logical state remain unaffected when majority voting doesn’t
fail. For example, if one physical bit flip happens |000⟩ → |100⟩, it will still corre-
spond to |0⟩L → |0⟩L. The majority voting doesn’t fail if only one physical bit flip
happens. Probability of one bit flip:

P1 bit flip = 3pX(1− pX)
2

Therefore the probability that logical state is unaffected is:

Punaffected = (1−pX)
3+3pX(1−pX)

2 =

(
1− 2p

3

)3

+2p

(
1− 2p

3

)2

= 1−4

3
p2+

16

27
p3.

• Logical bit flip occurs when majority voting fails:

if the original state is |0⟩L and errors creates

|011⟩
|101⟩
|110⟩
|111⟩

 the majority will votes |1⟩L

if the original state is |1⟩L and errors creates

|001⟩
|010⟩
|100⟩
|000⟩

 the majority will votes |0⟩L

Thus, to have logical bit-flip we need physical bit-flip on two or three qubits.
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In total,

Plogical X = P2 bit-flips + P3 bit-flips

= 3 (pX)
2 (1− pX) + (pX)

3

= 3

(
2p

3

)2(
1− 2p

3

)
+

(
2p

3

)3

=
4

3
p2 − 16

27
p3.

e) Probability of failure:

Pfail = 1− Punaffected = PLogical X =
4

3
p2 − 16

27
p3. (23)

Figure 5: Probability of Error Comparison

We see that the probability pL is always less than p, i.e. the logical error rate is lower than
the physical error rate. This shows that the three-qubit repetition code is able to reduce the
error rate for logical states. However, for general logical qubits, as seen in question a) and
b), this code can only correct bit-flip errors, and not phase-flip errors.
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