

Differential Geometry II - Smooth Manifolds
Winter Term 2025/2026
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 13

Exercise 1:

Let $F: M \rightarrow N$ be a smooth map. Prove the following assertions:

- (a) $F^*: \Omega^k(N) \rightarrow \Omega^k(M)$ is an \mathbb{R} -linear map.
- (b) It holds that $F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$.
- (c) In any smooth chart $(V, (y^i))$ for N , we have

$$F^* \left(\sum_I' \omega_I dy^{i_1} \wedge \dots \wedge dy^{i_k} \right) = \sum_I' (\omega_I \circ F) d(y^{i_1} \circ F) \wedge \dots \wedge d(y^{i_k} \circ F).$$

Exercise 2 (to be submitted by Thursday, 18.12.2025, 16:00):

- (a) Let V be a finite-dimensional real vector space and let $\omega^1, \dots, \omega^k \in V^*$. Show that the covectors $\omega^1, \dots, \omega^k$ are linearly dependent if and only if $\omega^1 \wedge \dots \wedge \omega^k = 0$.
- (b) Consider the smooth map

$$F: \mathbb{R}^2 \rightarrow \mathbb{R}^2, (s, t) \mapsto (st, e^t)$$

and the smooth 1-forms

$$\omega = x dy - y dx, \eta = x dy \in \Omega^1(\mathbb{R}^2).$$

(Observe that we denote the standard coordinates on the source by (s, t) and the standard coordinates on the target by (x, y) .)

- (i) Compute $d\eta$ and $F^*\eta$.
- (ii) Verify by direct computation that $d(F^*\eta) = F^*(d\eta)$.
- (iii) Compute $\omega \wedge \eta$ and $F^*(\omega \wedge \eta)$.

(c) Consider the smooth manifolds

$$M = \{(u, v) \in \mathbb{R}^2 \mid u^2 + v^2 < 1\} \quad \text{and} \quad N = \mathbb{R}^3 \setminus \{0\},$$

the smooth map

$$F: M \rightarrow N, (u, v) \mapsto \left(u, v, \sqrt{1 - u^2 - v^2}\right),$$

and the differential forms

$$\omega = \frac{x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}} \in \Omega^2(N)$$

and

$$\eta = \frac{x \, dx + y \, dy + z \, dz}{(x^2 + y^2 + z^2)^{1/2}} \in \Omega^1(N).$$

- (i) Compute $d\omega$ and $d\eta$.
- (ii) Compute $\omega \wedge \eta$ and $\eta \wedge d\eta$.
- (iii) Compute $F^*\omega$ and $F^*(d\eta)$.
- (iv) Verify that $d(F^*\omega) = F^*(d\omega)$.

Exercise 3:

Let (r, θ) be polar coordinates on the right half-plane $H = \{(x, y) \mid x > 0\}$. Compute the polar coordinate expression for the smooth 1-form $x \, dy - y \, dx \in \Omega^1(\mathbb{R}^2)$ and for the smooth 2-form $dx \wedge dy \in \Omega^2(\mathbb{R}^2)$.

[Hint: Think of the change of coordinates $(x, y) = (r \cos \theta, r \sin \theta)$ as the coordinate expression for the identity map of H , but using (r, θ) as coordinates for the domain and (x, y) as coordinates for the codomain.]

Exercise 4:

Consider the smooth 2-form

$$\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$$

on \mathbb{R}^3 with standard coordinates (x, y, z) .

- (a) Compute ω in spherical coordinates for \mathbb{R}^3 defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (b) Compute $d\omega$ in spherical coordinates.

- (c) Consider the inclusion map $\iota: \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ and compute the pullback $\iota^*\omega$ to \mathbb{S}^2 , using coordinates (φ, θ) on the open subset where these coordinates are defined.

- (d) Show that $\iota^*\omega$ is nowhere zero.

Exercise 5:

(a) *Exterior derivative of a smooth 1-form:* Show that for any smooth 1-form ω and any smooth vector fields X and Y on a smooth manifold M it holds that

$$d\omega(X, Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X, Y]).$$

(b) Let M be a smooth n -manifold, let (E_i) be a smooth local frame for M and let (ε^i) be the dual coframe. For each i , denote by b_{jk}^i the component functions of the exterior derivative of ε^i in this frame, and for each j, k , denote by c_{jk}^i the component functions of the Lie bracket $[E_j, E_k]$:

$$d\varepsilon^i = \sum_{j < k} b_{jk}^i \varepsilon^j \wedge \varepsilon^k \quad \text{and} \quad [E_j, E_k] = c_{jk}^i E_i.$$

Show that $b_{jk}^i = -c_{jk}^i$.