

Differential Geometry II - Smooth Manifolds

Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

Exercise Sheet 12 – Solutions

Exercise 1 (*Smoothness criteria for covector fields*): Let M be a smooth manifold and let $\omega: M \rightarrow T^*M$ be a rough covector field on M . Prove that the following assertions are equivalent:

- (a) ω is smooth.
- (b) In every smooth coordinate chart the component functions of ω are smooth.
- (c) Every point of M is contained in some smooth coordinate chart in which ω has smooth component functions.
- (d) For every smooth vector field X on M , the function $\omega(X): M \rightarrow \mathbb{R}$ is smooth on M .
- (e) For every open subset $U \subseteq M$ and every smooth vector field X on U , the function $\omega(X): U \rightarrow \mathbb{R}$ is smooth on U .

[Hint: Try proving (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) and (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (b).]

Solution:

(a) \Rightarrow (b): Suppose that ω is smooth. Let $(U, (x^i))$ be a smooth chart for M and consider the corresponding smooth chart $(\pi^{-1}(U), ((x^i), (\xi_i)))$ for T^*M . It is characterized by sending $\xi_i \lambda^i|_p$ to $((x^i(p)), (\xi_i))$, where $p \in U$ and $(\lambda_i|_p)$ is the dual basis of $(\partial/\partial x^i|_p)$. The component functions of ω with respect to the smooth chart $(U, (x^i))$ are by definition the functions $\omega_i: U \rightarrow \mathbb{R}$ determined by

$$\omega_p = \sum_i \omega_i(p) \cdot \lambda^i|_p, \quad p \in U.$$

Therefore, the coordinate representation $\hat{\omega}$ of ω with respect to these charts on U and $\pi^{-1}(U)$ is the map

$$\begin{aligned} \hat{\omega}: \hat{U} &\rightarrow \hat{U} \times \mathbb{R}^n \\ \hat{x} &\mapsto (\hat{x}, (\omega_i \circ \varphi^{-1}(\hat{x}))) . \end{aligned}$$

Since by hypothesis ω , and thus also $\hat{\omega}$, is smooth, we conclude that each $\omega_i \circ \varphi^{-1}$, and thus each ω_i itself, is smooth.

(b) \implies (c): Immediate.

(c) \implies (a): By hypothesis there exists an atlas $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in A}$ of M such that for each $\alpha \in A$, the covector field ω has smooth component functions in the chart $(U_\alpha, \varphi_\alpha)$. By the computation in (a) \implies (b) we see that the coordinate representation of ω with respect to the smooth charts $(U_\alpha, \varphi_\alpha)$ for M and $(\pi^{-1}(U_\alpha), (\varphi_\alpha, (\xi_{\alpha,i}))$ for T^*M is smooth. Hence, ω is smooth.

(c) \implies (d): Let $\{(U_\alpha, \varphi_\alpha)\}_\alpha$ be an atlas for which ω has smooth component functions $\omega_{\alpha,i}$, and write $\varphi_\alpha = (x_\alpha^i)$. Let $X^{\alpha,i}$ be the component functions of X on U_α , which are smooth by *Proposition 7.2*. Then, for any $p \in U_\alpha$, we have

$$\begin{aligned} \omega(X)(p) &= \omega_p(X_p) = \sum_i \sum_j \omega_{\alpha,i}(p) X^{\alpha,j}(p) \underbrace{\lambda^i|_p \left(\frac{\partial}{\partial x_\alpha^j}|_p \right)}_{=\delta_j^i} \\ &= \sum_i \omega_{\alpha,i}(p) X^{\alpha,i}(p), \end{aligned}$$

as $(\lambda^i|_p)$ is the dual basis of $(\partial/\partial x_\alpha^i|_p)$. Since all functions $\omega_{\alpha,i}$ and $X^{\alpha,i}$ are smooth, we conclude that $\omega(X)|_{U_\alpha}$ is smooth. As $\{(U_\alpha, \varphi_\alpha)\}_\alpha$ is an atlas for M , it follows from *Proposition 2.9(a)* that $\omega(X)$ is smooth.

(d) \implies (e): Let U be an open subset of M and let X be a smooth vector field on U . Let $p \in U$ and let (U_p, φ_p) be a smooth chart for M containing p . Let $\overline{V_p} \subseteq U_p$ be the preimage of a compact ball centered at $\varphi_p(p)$, and let V_p be its interior. Let $\psi_p: M \rightarrow \mathbb{R}$ be a smooth bump function with support in U_p such that $\psi_p|_{\overline{V_p}} \equiv 1$. Then the map $\psi_p X: M \rightarrow TM$ defined by

$$(\psi_p X)_q = \begin{cases} \psi_p(q) X_q & \text{if } q \in U, \\ 0 & \text{otherwise,} \end{cases}$$

is a smooth global vector field; indeed, it is smooth on U and on $M \setminus \text{supp}(\psi_p)$ (as it is 0 on this set), which is an open cover of M by construction. Hence, $\omega(\psi_p X)$ is smooth by assumption. But then $\omega(X)|_{V_p} = \omega(\psi_p X)|_{V_p}$ is also smooth by *Proposition 2.9(b)*. We conclude that there exists an open cover $\{V_p\}_{p \in U}$ of U such that $\omega(X)|_{V_p}$ is smooth for all $p \in U$, and thus $\omega(X): U \rightarrow \mathbb{R}$ is smooth on U by *Proposition 2.9(a)*.

(e) \implies (b): Let $(U, (x^i))$ be a smooth chart for M and let ω_i be the component functions of ω with respect to this chart. By applying (e) to the smooth vector field $\partial/\partial x^i: U \rightarrow \mathbb{R}$, we infer that the function $\omega(\partial/\partial x^i): U \rightarrow \mathbb{R}$ is smooth. But this is equal to the function $\omega_i: U \rightarrow \mathbb{R}$, since for any $p \in U$ we have

$$\omega \left(\frac{\partial}{\partial x^i} \right) (p) = \sum_j \omega_j(p) \cdot \underbrace{\lambda^j|_p \left(\frac{\partial}{\partial x^i}|_p \right)}_{=\delta_i^j} = \omega_i(p).$$

Therefore, the component functions ω_i of ω with respect to the given smooth chart $(U, (x^i))$ are smooth.

Remark. The above arguments for (d) \implies (e) and (e) \implies (b) yield in particular the following: two (rough) covector fields $\omega, \omega': M \rightarrow T^*M$ are equal if and only if $\omega(X) = \omega'(X)$ for all smooth global vector fields X on M .

Exercise 2: Let M be a smooth n -manifold. Show that TM is a smoothly trivial vector bundle if and only if T^*M is a smoothly trivial vector bundle.

Solution: Assume first that TM is a smoothly trivial vector bundle over M . Then there exists a smooth global trivialization $\Phi: TM \rightarrow M \times \mathbb{R}^n$, which corresponds to a smooth global frame $\{X_1, \dots, X_n\}$ by [Exercise Sheet 9, Exercise 5]. Then the global coframe $\{\omega_1, \dots, \omega_n\}$ dual to $\{X_1, \dots, X_n\}$ is smooth by Lemma 8.7 and corresponds to a smooth global trivialization $\Psi: T^*M \rightarrow M \times \mathbb{R}^n$ by [Exercise Sheet 9, Exercise 5]. Therefore, T^*M is a smoothly trivial vector bundle over M .

Assume now that T^*M is a smoothly trivial vector bundle. Argue similarly, we conclude that TM is a smoothly trivial vector bundle.

Exercise 3 (Properties of the differential): Let M be a smooth manifold and let $f, g \in C^\infty(M)$. Prove the following assertions:

- (a) If $a, b \in \mathbb{R}$, then $d(af + bg) = a df + b dg$.
- (b) $d(fg) = f dg + g df$.
- (c) $d(f/g) = (g df - f dg)/g^2$ on the set where $g \neq 0$.
- (d) If $J \subseteq \mathbb{R}$ is an interval containing the image of f and if $h: J \rightarrow \mathbb{R}$ is a smooth function, then $d(h \circ f) = (h' \circ f) df$.
- (e) If f is constant, then $df = 0$. Conversely, if $df = 0$, then f is constant on each connected component of M .

Solution:

- (a) Fix $a, b \in \mathbb{R}$ and $p \in M$. For any $v \in T_p M$ we have

$$\begin{aligned} d(af + bg)_p(v) &= v(af + bg) = a v(f) + b v(g) \\ &= a df_p(v) + b dg_p(v) \\ &= (a df_p + b dg_p)(v). \end{aligned}$$

Therefore,

$$d(af + bg)_p = a df_p + b dg_p,$$

which yields the statement, since $p \in M$ was arbitrary.

- (b) Fix $p \in M$. For any $v \in T_p M$ we have

$$\begin{aligned} d(fg)_p(v) &= v(fg) = f(p) vg + g(p) vf \\ &= f(p) dg_p(v) + g(p) df_p(v) \\ &= (f(p) dg_p + g(p) df_p)(v). \end{aligned}$$

Therefore,

$$d(fg)_p = f(p) dg_p + g(p) df_p,$$

which yields the statement, since $p \in M$ was arbitrary.

Note: We may also argue somewhat differently as follows (the same also applies for (a) above, and this method will be used in (c) below as well): Let X be a smooth global vector field on M . For any $p \in M$ we have

$$d(fg)(X)(p) = X_p(fg) = f(p) X_p(g) + g(p) X_p(f) = (f dg)(X)(p) + (g df)(X)(p).$$

Therefore,

$$d(fg)(X) = (f dg)(X) + (g df)(X)$$

for any smooth global vector field X , which yields the statement.

(c) Let $U := M \setminus g^{-1}(0)$. Let X be a smooth vector field on U . Given $p \in U$, note that

$$0 = X_p(1) = X_p(g \cdot (1/g)) = g(p) X_p(1/g) + (1/g(p)) X_p(g),$$

which yields

$$X_p(1/g) = -X_p(g)/(g(p)^2).$$

Therefore,

$$d(1/g)(X)(p) = X_p(1/g) = -X_p(g)/(g(p)^2) = (-(dg)/g^2)(X)(p)$$

for all X and p , which implies that

$$d(1/g) = -(dg)/g^2.$$

It follows that

$$d(f/g) \stackrel{(b)}{=} (1/g) df + f d(1/g) = (1/g) df - (f/g^2) dg = (g df - f dg)/g^2,$$

as desired.

(d) Fix $p \in M$ and $v \in T_p M$. Write $v = v^i \frac{\partial}{\partial x^i} \big|_p$ and note that

$$\left. \frac{\partial}{\partial x^i} \right|_p (h \circ f) = \frac{\partial(h \circ f)}{\partial x^i}(p) = h'(f(p)) \frac{\partial f}{\partial x^i}(p) = h'(f(p)) \left. \frac{\partial}{\partial x^i} \right|_p f$$

by the chain rule. Therefore,

$$\begin{aligned} d(h \circ f)_p(v) &= v(h \circ f) = \left(v^i \left. \frac{\partial}{\partial x^i} \right|_p \right) (h \circ f) \\ &= v^i h'(f(p)) \left. \frac{\partial}{\partial x^i} \right|_p f = h'(f(p)) v f \\ &= (h' \circ f)(p) df_p(v). \end{aligned}$$

Since $v \in T_p M$ was arbitrary, we infer that $d(h \circ f)_p = (h' \circ f)(p) df_p$, and since $p \in M$ was arbitrary, we conclude that $d(h \circ f) = (h' \circ f) df$, as desired.

Note: We may alternatively argue as follows: Let X be a smooth global vector field on M and let $p \in M$ be arbitrary. To avoid confusion, denote by $df_p: T_p M \rightarrow T_{f(p)} \mathbb{R}$ the differential of f at $p \in M$ as a linear map between tangent spaces, and by $d^{\text{cov}} f$ the covector field determined by f . They are related as follows: for every $p \in M$ and $v \in T_p M$, we have

$$d^{\text{cov}} f_p(v) = [df_p(v)](\text{Id}_{\mathbb{R}}).$$

This follows from the fact that the natural identification of $T_{f(p)} \mathbb{R}$ with \mathbb{R} is provided by evaluation at $\text{Id}_{\mathbb{R}}$. Therefore, if $p \in M$ and $v \in T_p M$ are arbitrary, then we have

$$\begin{aligned} d^{\text{cov}}(h \circ f)_p(v) &= [d(h \circ f)_p(v)](\text{Id}_{\mathbb{R}}) = [dh_{f(p)}(df_p(v))](\text{Id}_{\mathbb{R}}) \\ &= h'(f(p)) \cdot [df_p(v)](\text{Id}_{\mathbb{R}}) = h'(f(p)) \cdot d^{\text{cov}} f_p(v), \end{aligned}$$

where we used that for any $t \in J$, the differential $dh_t: T_t J \rightarrow T_{h(t)} \mathbb{R}$ is the map given by scalar multiplication with $h'(t)$. As $p \in M$ and $v \in T_p M$ were arbitrary, we conclude that $d^{\text{cov}}(h \circ f) = (h' \circ f) d^{\text{cov}} f$.

(e) In view of the fact that the differential of f as defined in *Chapter 3* (i.e., as a linear map $df_p: T_p M \rightarrow T_p \mathbb{R}$) and as defined in *Chapter 8* (i.e., as a linear map $df_p: T_p M \rightarrow \mathbb{R}$) is the same object (due to the canonical identification between \mathbb{R} and $T_p \mathbb{R}$), the assertion is simply a special case of [*Exercise Sheet 5, Exercise 1(b)*].

Exercise 4:

(a) *Derivative of a function along a curve:* Let M be a smooth manifold, $\gamma: J \rightarrow M$ be a smooth curve, and $f: M \rightarrow \mathbb{R}$ be a smooth function. Show that the derivative of $f \circ \gamma: J \rightarrow \mathbb{R}$ is given by

$$(f \circ \gamma)'(t) = df_{\gamma(t)}(\gamma'(t)).$$

(b) Let M be a smooth manifold and let $f \in C^\infty(M)$. Show that $p \in M$ is a critical point of f if and only if $df_p = 0$.

(c) Consider the smooth manifold

$$M := \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$$

and the smooth function

$$f: M \rightarrow \mathbb{R}, (x, y) \mapsto \frac{x}{x^2 + y^2}.$$

Compute the coordinate representation for df and determine the set of all points $p \in M$ at which $df_p = 0$.

Solution:

(a) Using the definitions, for any $t \in J$ we have

$$df_{\gamma(t)}(\gamma'(t)) = \gamma'(t) f = d\gamma \left(\frac{d}{dt} \Big|_t \right) (f) = \frac{d}{dt} \Big|_t (f \circ \gamma) = (f \circ \gamma)'(t).$$

(b) Since the differential df_p is a linear map with codomain the 1-dimensional \mathbb{R} -vector space $T_p\mathbb{R} \cong \mathbb{R}$, it is surjective if and only if there exists $v \in T_pM \setminus \{0\}$ such that $df_p(v) \in \mathbb{R} \setminus \{0\} \cong T_p\mathbb{R} \setminus \{0\}$. Therefore, $p \in M$ is a critical point of f if and only if df_p is not surjective if and only if $df_p = 0$ (i.e., the zero linear map).

(c) Given a point $p = (x_0, y_0) \in M$, the differential df_p of f at p is represented in coordinates (x, y) by the row matrix D_p whose components are the partial derivatives of f at $p = (x_0, y_0)$; namely,

$$D_p = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0) \right) = \left(\frac{y_0^2 - x_0^2}{(x_0^2 + y_0^2)^2}, \frac{-2x_0y_0}{(x_0^2 + y_0^2)^2} \right).$$

In view of part (b), to find the points $p \in M$ at which $df_p = 0$, we have to solve the system

$$(\Sigma) : \begin{cases} y^2 - x^2 = 0 \\ -2xy = 0 \end{cases}$$

under the restriction that $x > 0$. It is straightforward to see that (Σ) has no solutions $(x, y) \in M$; in other words,

$$\{p \in M \mid df_p = 0\} = \emptyset.$$

Exercise 5 (to be submitted):

(a) Consider the smooth map

$$F: \mathbb{R}^2 \rightarrow \mathbb{R}^2, (s, t) \mapsto (st, e^t)$$

and the smooth covector field

$$\omega = x \, dy - y \, dx \in \mathfrak{X}^*(\mathbb{R}^2).$$

Compute $F^*\omega$.

(b) Consider the function

$$f: \mathbb{R}^3 \rightarrow \mathbb{R}, (x, y, z) \mapsto x^2 + y^2 + z^2$$

and the map

$$F: \mathbb{R}^2 \rightarrow \mathbb{R}^3, (u, v) \mapsto \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right).^1$$

Compute $F^*(df)$ and $d(f \circ F)$ separately, and verify that they are equal.

(c) Let M be a compact, connected, smooth manifold of dimension $n > 0$. Show that every exact smooth covector field on M vanishes at least at two points of M .

¹Note that F is the inverse of the stereographic projection from the north pole $N \in \mathbb{S}^2$; see [Exercise Sheet 2, Exercise 6].

Solution:

(a) We have

$$\begin{aligned}
F^*\omega &= (x \circ F) d(y \circ F) - (y \circ F) d(x \circ F) \\
&= (st) d(e^t) - (e^t) d(st) \\
&= ste^t dt - e^t(s dt + t ds) \\
&= (-te^t) ds + se^t(t-1) dt.
\end{aligned}$$

(b) On the one hand, by *Exercise 3* we obtain

$$df = d(x^2 + y^2 + z^2) = 2x dx + 2y dy + 2z dz,$$

and since

$$\begin{aligned}
d(x \circ F) &= d\left(\frac{2u}{u^2 + v^2 + 1}\right) = \frac{2(u^2 + v^2 + 1) - 4u^2}{(u^2 + v^2 + 1)^2} du + \frac{-4uv}{(u^2 + v^2 + 1)^2} dv, \\
d(y \circ F) &= d\left(\frac{2v}{u^2 + v^2 + 1}\right) = \frac{-4uv}{(u^2 + v^2 + 1)^2} du + \frac{2(u^2 + v^2 + 1) - 4v^2}{(u^2 + v^2 + 1)^2} dv, \\
d(z \circ F) &= d\left(\frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right) = \frac{4u}{(u^2 + v^2 + 1)^2} du + \frac{4v}{(u^2 + v^2 + 1)^2} dv,
\end{aligned}$$

we compute that

$$\begin{aligned}
F^*(df) &= 2(x \circ F) d(x \circ F) + 2(y \circ F) d(y \circ F) + 2(z \circ F) d(z \circ F) \\
&= 2 \frac{2u}{u^2 + v^2 + 1} d\left(\frac{2u}{u^2 + v^2 + 1}\right) + 2 \frac{2v}{u^2 + v^2 + 1} d\left(\frac{2v}{u^2 + v^2 + 1}\right) + \\
&\quad + 2 \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} d\left(\frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right) \\
&= \frac{(8u(u^2 + v^2 + 1) - 16u^3) - 16uv^2 + 8u(u^2 + v^2 - 1)}{(u^2 + v^2 + 1)^3} du + \\
&\quad + \frac{-16u^2v + (8v(u^2 + v^2 + 1) - 16v^3) + 8v(u^2 + v^2 - 1)}{(u^2 + v^2 + 1)^3} dv \\
&= 0.
\end{aligned}$$

On the other hand, we have

$$\begin{aligned}
(f \circ F)(u, v) &= \left(\frac{2u}{u^2 + v^2 + 1}\right)^2 + \left(\frac{2v}{u^2 + v^2 + 1}\right)^2 + \left(\frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)^2 \\
&= \frac{(u^2 + v^2 + 1)^2}{(u^2 + v^2 + 1)^2} \\
&= 1,
\end{aligned}$$

whence $d(f \circ F) = 0$ according to *Exercise 3(e)*.

(c) Let $\omega \in \mathfrak{X}^*(M)$ be exact and let $f \in C^\infty(M)$ such that $\omega = df$. Since M is compact, f attains its minimum at a point $p \in M$ and its maximum at a point $q \in M$, and since df is represented in coordinates by the gradient of (the coordinate representation of) f , we have $df_p = 0 = df_q$. Note also that if $p = q$, then f is constant, and thus $df = 0$ by *Exercise 3(e)*.