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Differential Geometry II - Smooth Manifolds
Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 12 — Solutions

Exercise 1 (Smoothness criteria for covector fields): Let M be a smooth manifold and
let w: M — T*M be a rough covector field on M. Prove that the following assertions are
equivalent:

(a) w is smooth.
(b) In every smooth coordinate chart the component functions of w are smooth.

(c) Every point of M is contained in some smooth coordinate chart in which w has smooth
component functions.

(d) For every smooth vector field X on M, the function w(X): M — R is smooth on M.

(e) For every open subset U C M and every smooth vector field X on U, the function
w(X): U — R is smooth on U.

[Hint: Try proving () = (b)) = (¢) = (a) and (¢) = (d) = (e) = (b)/]

Solution:

(a) = (b): Suppose that w is smooth. Let (U, (z)) be a smooth chart for M and con-
sider the corresponding smooth chart (7= (U), ((z%), (&))) for T*M. It is characterized
by sending & A, to ((«7(p)), (&)), where p € U and (\;],) is the dual basis of (9/0z'],).
The component functions of w with respect to the smooth chart (U, (z)) are by definition
the functions w;: U — R determined by

wp = Zwi(p) N, peU.

Therefore, the coordinate representation @ of w with respect to these charts on U and
7~ Y(U) is the map



Since by hypothesis w, and thus also @, is smooth, we conclude that each w; o ¢!, and
thus each w; itself, is smooth.

(b) = (c): Immediate.

(¢) = (a): By hypothesis there exists an atlas {(Us,, ©a)}aca of M such that for each
a € A, the covector field w has smooth component functions in the chart (U,, ¢, ). By the
computation in (a) = (b) we see that the coordinate representation of w with respect to
the smooth charts (Ua, pa) for M and (77 1(Us,), (Pa, (€a,:)) for T*M is smooth. Hence,
w is smooth.

() = (d): Let {(Ua, ¥a)}a be an atlas for which w has smooth component functions
Wai, and write ¢, = (2%,). Let X @ be the component functions of X on U,, which are
smooth by Proposition 7.2. Then, for any p € U,, we have
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as (\|,) is the dual basis of (9/dz%],). Since all functions w,; and X, ; are smooth,
we conclude that w(X)|p, is smooth. As {(U,, ¥a)}a is an atlas for M, it follows from
Proposition 2.9(a) that w(X) is smooth.

(d) = (e): Let U be an open subset of M and let X be a smooth vector field on U.
Let p € U and let (Up, ¢,) be a smooth chart for M containing p. Let V, C U, be the
preimage of a compact ball centered at ¢,(p), and let V,, be its interior. Let ¢,: M — R
be a smooth bump function with support in U, such that ¢p|VT, = 1. Then the map

@/JpX: M — T'M defined by
if qe U
(1/)1) ) {wp( ) q rq .7

0 otherwise,

is a smooth global vector field; indeed, it is smooth on U and on M \ supp(t,) (as it is 0
on this set), which is an open cover of M by construction. Hence, w(,X) is smooth by
assumption. But then w(X)|y, = w(¥pX)l|y, is also smooth by Proposition 2.9(b). We
conclude that there exists an open cover {V,},er of U such that w(X)|y, is smooth for
all p € U, and thus w(X): U — R is smooth on U by Proposition 2.9(a).

(e) = (b): Let (U, (z*)) be a smooth chart for M and let w; be the component functions
of w with respect to this chart. By applying (e) to the smooth vector field 9/0x%: U — R,
we infer that the function w(9/0x"): U — R is smooth. But this is equal to the function
w;: U — R, since for any p € U we have
) = wi(p).
p
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Therefore, the component functions w; of w with respect to the given smooth chart
(U, (z%)) are smooth.



Remark. The above arguments for (d) = (e) and (¢) == (b) yield in particular
the following: two (rough) covector fields w,w’: M — T*M are equal if and only if
w(X) = W' (X) for all smooth global vector fields X on M.

Exercise 2: Let M be a smooth n-manifold. Show that T'M is a smoothly trivial vector
bundle if and only if 7*M is a smoothly trivial vector bundle.

Solution: Assume first that T'M is a smoothly trivial vector bundle over M. Then there
exists a smooth global trivialization ®: T'M — M x R", which corresponds to a smooth
global frame {Xl, e ,Xn} by [Ezercise Sheet 9, Exercise 5]. Then the global coframe
{wl, e ,wn} dual to {Xl, e ,Xn} is smooth by Lemma 8.7 and corresponds to a smooth
global trivialization W: T*M — M xR"™ by [Exercise Sheet 9, Exercise 5|. Therefore, T* M
is a smoothly trivial vector bundle over M.

Assume now that T*M is a smoothly trivial vector bundle. Argue similarly, we con-
clude that T'M is a smoothly trivial vector bundle.

Exercise 3 (Properties of the differential): Let M be a smooth manifold and let f,g €
C*°(M). Prove the following assertions:

(a) If a,b € R, then d(af + bg) = adf + bdg.

(b) d(fg) = fdg+gdf.

(c) d(f/g) = (gdf — fdg)/g* on the set where g # 0.
)

(d) If J C R is an interval containing the image of f and if h: J — R is a smooth
function, then d(ho f) = (k' o f)df.

(e) If f is constant, then df = 0. Conversely, if df = 0, then f is constant on each
connected component of M.
Solution:

(a) Fix a,b € R and p € M. For any v € T,,M we have

d(af +bg),(v) =v(af +bg) =av(f)+bv(g)
= adf,(v) + bdg,(v)
= (adf, +bdgy)(v).
Therefore,
d(af +bg)y = adf, +bdg,,
which yields the statement, since p € M was arbitrary.
(b) Fix p € M. For any v € T,M we have

d(fg)p(v) =v(fg) = f(p)vg + g(p) vf
f(p) dgy(v) + g(p) dfy(v)
= (f(p) dgp + 9(p) df,) (v).



Therefore,
d(fg)y = f(p)dg, + g(p) dfp,

which yields the statement, since p € M was arbitrary.

Note: We may also argue somewhat differently as follows (the same also applies for
(a) above, and this method will be used in (c) below as well): Let X be a smooth global
vector field on M. For any p € M we have

d(fg)(X)(p) = Xp(fg) = f(p) Xp(g9) + 9(p) Xp(f) = (f dg)(X)(p) + (9df )(X)(p).

Therefore,
d(fg)(X) = (f dg)(X) + (9 df )(X)
for any smooth global vector field X, which yields the statement.
(c) Let U :== M \ g~!(0). Let X be a smooth vector field on U. Given p € U, note that

0=X,(1) = X,(g-(1/9)) = 9(p) X, (1/9) + (1/9(p)) X, (9),
which yields
Xo(1/9) = —=X,(9)/(9(p)?)-
Therefore,
d(1/9)(X)(p) = X,(1/9) = =X,(9)/ (9(p)*) = (—(dg)/9*)(X)(p)
for all X and p, which implies that
d(1/9) = —(dg)/g*
It follows that
d(f/9) Y (1g)df + fd(1/g) = (L/g)df — (f/g*)dg = (gdf — fdg)/g".

as desired.

(d) Fix p € M and v € T,M. Write v = v’ , and note that
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by the chain rule. Therefore,

d(ho f)y(v) = (

= h’(

8:6’
= (K o f)(p) df(v )-

Since v € T,M was arbitrary, we infer that d(h o f), = (k' o f)(p) df,, and since p € M
was arbitrary, we conclude that d(ho f) = (R’ o f)df, as desired.
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Note: We may alternatively argue as follows: Let X be a smooth global vector field
on M and let p € M be arbitrary. To avoid confusion, denote by df,: T,M — Ty,R
the differential of f at p € M as a linear map between tangent spaces, and by d°f
the covector field determined by f. They are related as follows: for every p € M and
v € T,M, we have

A fy(v) = [dfy(v)](1dg).

This follows from the fact that the natural identifaction of T, R with R is provided by
evaluation at Idg. Therefore, if p € M and v € T,M are arbitrary, then we have

d*(ho f)y(v) = [d(ho f)p(v)](1dr) = [dhyse) (df,(v))] (Idr)
=1 (f(p)) - dfp(v)](dr) = I (f(p) - d°" f (v),

where we used that for any ¢ € J, the differential dh;: T;J — Tj,;)R is the map given by
scalar multiplication with h'(¢). As p € M and v € T,,M were arbitrary, we conclude that

d**(ho ) = (W o ) df.

(e) In view of the fact that the differential of f as defined in Chapter 3 (i.e., as a linear
map df,: T,M — T,R) and as defined in Chapter 8 (i.e., as a linear map df,,: T,M — R)
is the same object (due to the canonical identification between R and T,R), the assertion
is simply a special case of [Exercise Sheet 5, Ezercise 1(b)].

Exercise 4:

(a) Derivative of a function along a curve: Let M be a smooth manifold, v: J — M be
a smooth curve, and f: M — R be a smooth function. Show that the derivative of
fovy:J— Ris given by

(fo)(t) = dfy (v'(2))-

(b) Let M be a smooth manifold and let f € C*°(M). Show that p € M is a critical
point of f if and only if df, = 0.

(c¢) Consider the smooth manifold
M = {(z,y) e R* |z > 0}

and the smooth function

X

fI M—>R, ([L‘,y)f—> m

Compute the coordinate representation for df and determine the set of all points
p € M at which df, = 0.

Solution:

(a) Using the definitions, for any ¢ € J we have

) n=1

5

(/) =0 F = (5 (Fom) = (o)1)

t



(b) Since the differential df,, is a linear map with codomain the 1-dimensional R-vector
space T,R = R, it is surjective if and only if there exists v € T,M \ {0} such that
df,(v) € R\ {0} = T,R\ {0}. Therefore, p € M is a critical point of f if and only if df,,
is not surjective if and only if df, = 0 (i.e., the zero linear map).

(c) Given a point p = (zo,y0) € M, the differential df, of f at p is represented in
coordinates (z,y) by the row matrix D, whose components are the partial derivatives of
f at p = (20,0); namely,

of of ok M
D, = (G_x(xo’y0)7 a-y(xo;?Jo)) = (($§+y80)27 (3 +v5)?/)

In view of part (b), to find the points p € M at which df, = 0, we have to solve the

system
2 2
y*—2°=0
<z>:{ o
—2zxy =0

under the restriction that x > 0. It is straightforward to see that (X) has no solutions
(xz,y) € M; in other words,
{pe M |df,=0}=0.

Exercise 5 (to be submitted):

(a) Consider the smooth map
F:R? = R? (s,t) > (st,e")
and the smooth covector field
w=xdy —ydr € X*(R?).
Compute F*w.
(b) Consider the function
fiR =R, (1,y,2)— 2 +y* + 22

and the map

2 2
F:R? - R?, (u,’u)»—>( 2u v ut 1).1

w2+ 4+ 17w+ 02+ 17w+ 02+ 1
Compute F*(df) and d(f o F') separately, and verify that they are equal.

(c) Let M be a compact, connected, smooth manifold of dimension n > 0. Show that
every exact smooth covector field on M vanishes at least at two points of M.

!Note that F is the inverse of the stereographic projection from the north pole N € S?; see [Ezercise
Sheet 2, Ezercise 6].



Solution:

(a) We have

Fro=(zoF)d(yoF)—(yoF)d(zoF)
= (st)d(e") — (e') d (st)
= ste' dt — e'(sdt + tds)
= (—te') ds + se'(t — 1) dt.

(b) On the one hand, by Ezercise 3 we obtain

df = d(z* +y* + 2*) = 2vdr + 2y dy + 2z dz,

and since
B B L2
d(yoF)=d <_u2 +2:2 T 1) T w2 Jr_j;“jr—l)Q du + 2<UZ; f; i) 1;241)2 dv,
d(zo0F) :d(%) - WL]—Z+1)2du+W+i—ZH>2dv,

we compute that

FH(df) = 2(x 0 F)d(z0 F) +2(yo F)d(yo F) +2(z0 F)d(z o F)

2u 2u 2v 2v
=2 d + 2 d +
w402 +1 \u?+02+1 w40 +1 \uw?+02+1
wWHvr—1 [(uP+02-—1
u? +0v2 41 u?+v2+1

(8u(u? 4+ v* + 1) — 16u®) — 16uv* + 8u(u? + v* — 1)

_ du+
(@ + 0% + 1)

N —16u?v + (Bv(u? 4 v* + 1) — 160%) + 8v(u? + v* — 1)

(u2+/02+1)3

dv

= 0.
On the other hand, we have

2u 2 2v Pl -1
F == —_ -
(f o F)(u,v) (u2+vz—|—1> +(u2+02+1) +(u2+vz+1)

(WP +1)?
- (u2—|—v2+1)2
=1

Y

whence d(f o F') = 0 according to Ezercise 3(e).
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(c) Let w € X*(M) be exact and let f € C°°(M) such that w = df. Since M is compact,
f attains its minimum at a point p € M and its maximum at a point ¢ € M, and since
df is represented in coordinates by the gradient of (the coordinate representation of) f,
we have df, = 0 = df,. Note also that if p = ¢, then f is constant, and thus df = 0 by

FEzercise 3(e).



