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Problem Set 10

Problem 1: Ky-Fan metric

Let X and Y be random variables defined on common probability space (Ω,F,P) . Define

d(X,Y ) = E
(
log2

(
1 +

|X − Y |
1 + |X − Y |

))
.

a) First, we would like to confirm that d(X,Y ) is a distance metric. Show that d(X,Y ) satisfies the
triangle inequality. That is, d(X,Z) ≤ d(X,Y ) + d(Y,Z) for any X , Y , and Z .

Hint: the function f(x) = log2(1 + x) is sub-additive, e.g. f(x+ y) ≤ f(x) + f(y) .

Next, we would like to check if convergence with respect to d(X,Y ) is equivalent to convergence in
probability (a distance metric with this property is sometimes called a Ky-Fan metric).

b) Let (Xn, n ≥ 1) be sequence of random variables and X be another random variable, all defined on

the same probability space (Ω,F,P) . Show that if Xn
P→

n→∞
X then limn→∞ d(Xn, X) = 0 .

c) Is the converse true? That is, if limn→∞ d(Xn, X) = 0 then Xn
P→

n→∞
X . If yes, prove the statement.

If no, provide a counter example.

Problem 2: Total variation distance

a) Let P({X = 1}) = P({X = −1}) = 1
2 and Y ∼ N (0, 1) . What is dTV (X,Y ) ?

b) Let (Xn, n ≥ 1) be a sequence of random variables and X be another random variable on (Ω,F,P) .
Show that if limn→∞ dTV (Xn, X) = 0 then Xn

d→
n→∞

X .

c) Is the converse true? That is, if Xn
d→

n→∞
X then limn→∞ dTV (Xn, X) = 0 . If yes, prove the state-

ment. If no, provide a counter example.
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Problem 3: Convergence in Lp

a) Given a sequence of random variables (Xn, n ≥ 1) , a random variable X , and r ≥ 1 , we say that Xn

converges to X in r th mean (written Xn
Lr

→
n→∞

X ) if E(|Xr
n|) < ∞ for all n and

E(|Xn −X|r) →
n→∞

0.

Show that if r > s ≥ 1 then,

Xn
Lr

→
n→∞

X ⇒ Xn
Ls

→
n→∞

X.

b) Suppose that Xn
L1

→
n→∞

X . Show that E(Xn) →
n→∞

E(X) . Is the converse true?

Problem 4: Bernoulli sums

Let λ > 0 be fixed. For a given n ≥ ⌈λ⌉ , let X
(n)
1 , . . . , X

(n)
n be i.i.d. Bernoulli (λ/n) random variables

and let Sn = X
(n)
1 + . . .+X

(n)
n .

a) Compute E(Sn) and Var(Sn) for a fixed value of n ≥ ⌈λ⌉ .

b) Deduce the value of µ = limn→∞ E(Sn) and σ2 = limn→∞ Var(Sn) .

c) Compute the limiting distribution of Sn (as n → ∞ ).

Hint: Use characteristic functions. You might also have a look at tables of characteristic functions of
some well known distributions in order to solve this exercise.

For a given n ≥ 1 , let now Y
(n)
1 , . . . , Y

(n)
n be i.i.d. Bernoulli (1/n) random variables and let

Tn = Y
(n)
1 + . . .+ Y

(n)
⌈λn⌉

where λ > 0 is the same as above.

d) Compute the limiting distribution of Tn (as n → ∞ ).

e) Is it also the case that either Sn or Tn converge almost surely or in probability towards a limit?
Justify your answer!

Problem 5: The game

Someone proposes to you the following game: start with an initial amount of S0 > 0 francs, of your
choice. Then toss a coin: if it falls on heads, you win S0/2 francs; while if it falls on tails, you lose S0/2
francs. Call S1 your amount after this first coin toss. Then the game goes on, so that your amount after
coin toss number n ≥ 1 is given by

Sn =


Sn−1 +

Sn−1

2 if coin number n falls on heads

Sn−1 − Sn−1

2 if coin number n falls on tails

We assume moreover that the coin tosses are independent and fair, i.e., with probability 1/2 to fall on
each side. Nevertheless, you should not agree to play such a game: explain why!

Hints:
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First, to ease the notation, define Xn = +1 if coin n falls on heads and Xn = −1 if coin n falls on
tails. That way, the above recursive relation may be rewritten as Sn = Sn−1 (1 +

Xn

2 ) for n ≥ 1 .

a) Compute recursively E(Sn) ; if it were only for expectation, you could still consider playing such a
game, but. . .

b) Define now Yn = log(Sn/S0) , and use the central limit theorem to approximate P({Yn > t}) for a
fixed value of t ∈ R and a relatively large value of n . Argue from there why it is definitely not a good
idea to play such a game! (computing for example an approximate value of P({S100 > S0/10}) )

Problem 6: The birthday problem

Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables, each uniform on {1, . . . , N} . Let also

TN = min{n ≥ 1 : Xn = Xm for some m < n}

(notice that whatever happens, TN ∈ {2, . . . , N + 1} ).

a) Show that

P
({

TN√
N

≤ t

})
→

N→∞
1− e−t2/2, ∀t ≥ 0

Remarks:
- Approximations are allowed here!

- Please observe that the limit distribution is not the Gaussian distribution!

b) Numerical application: Use this to obtain a rough estimate of P ({T365 ≤ 22}) and P ({T365 ≤ 50})
(i.e., what is the probability that among 22 / 50 people, at least two share the same birthday?)
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