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Problem 1: Convergence of random variables

Let (Xn, n ≥ 1) be independent random variables such that Xn ∼ Bern(1− 1
(n+1)α ) , where α > 0 .

Let us also define Yn =
∏n

j=1 Xj for n ≥ 1 .

a) What minimal condition on the parameter α > 0 ensures that Yn
P→

n→∞
0 ?

Hint: Use the approximation 1− x ≃ exp(−x) for x small.

b) Under the same condition as that found in a), does it also hold that Yn
L2

→
n→∞

0 ?

c) Under the same condition as that found in a), does it also hold that Yn →
n→∞

0 almost surely ?

Hint: If Yn = 0 , what can you deduce on Ym for m ≥ n ?

Solution a) Let us compute for ε > 0 :

P({|Yn − 0| > ε}) ≤ P({Yn > 0}) = P({Yn = 1}) =
n∏

j=1

P({Xj = 1})

=

n∏
j=1

(
1− 1

(j + 1)α

)
≃ exp

−
n∑

j=1

1

(j + 1)α


where the hint was used in the last (approximate) equality. If α > 1 , then

∑n
j=1

1
(j+1)α converges to a

fixed value < +∞ as n → ∞ , so P({Yn > 0}) does not converge to 0 as n → ∞ .

On the contrary, if 0 < α ≤ 1 , then
∑n

j=1
1

(j+1)α →
n→∞

+∞ , in which case P({Yn > 0}) →
n→∞

0 , so

Yn
P→

n→∞
0 in this case.

b) The answer is yes. Indeed, we have E((Yn − 0)2) = E(Y 2
n ) = P({Yn = 1}) , so Yn

L2

→
n→∞

0 if and only

if Yn
P→

n→∞
0 .

c) The answer is again yes. Indeed, if for a given realization ω , Yn(ω) = 0 , then Ym(ω) = 0 for every
m ≥ n , and therefore limn→∞ Yn(ω) = 0 . This implies that

P({limn→∞ Yn = 0}) ≥ P({Yn = 0})

for any fixed value of n ≥ 1 . If 0 < α ≤ 1 , we have seen in question a) that P({Yn = 0}) →
n→∞

1 . So

the above inequality implies that Yn →
n→∞

0 almost surely in this case.
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Remark. Please note finally that when α > 1 , convergence in probability does not hold, so automatically
in this case, quadratic convergence and almost sure convergence do not hold either.

Problem 2: Second B-C lemma

a) Show that if (An, n ≥ 1) are independent events in F and
∑

n≥1 P(An) = ∞ , then

P
( ⋃

n≥1

An

)
= 1

Hints: - Start by observing that the statement is equivalent to P
(⋂

n≥1 A
c
n

)
= 0 .

- Use the inequality 1− x ≤ e−x , valid for all x ∈ R .

b) From the same set of assumptions, reach the following stronger conclusion with a little extra effort:

P({ω ∈ Ω : ω ∈ An infinitely often}) = P
( ⋂

N≥1

⋃
n≥N

An

)
= 1

which is actually the statement of the second Borel-Cantelli lemma.

c) Let (Xn, n ≥ 1) be a sequence of independent random variables such that for some ε > 0 ,
∑

n≥1 P({|Xn| ≥
ε}) = +∞ . What can you conclude on the almost sure convergence of the sequence Xn towards the
limiting value 0 ?

d) Let (Xn, n ≥ 1) be a sequence of independent random variables such that P({Xn = n}) = pn =
1− P({Xn = 0}) for n ≥ 1 . What minimal condition on the sequence (pn, n ≥ 1) ensures that

d1) Xn
P→

n→∞
0 ? d2) Xn

L2

→
n→∞

0 ? d3) Xn →
n→∞

0 almost surely?

e) Let (Yn, n ≥ 1) be a sequence of independent random variables such that Yn ∼ Cauchy(λn) for
n ≥ 1 . What minimal condition on the sequence (λn, n ≥ 1) ensures that

e1) Yn
P→

n→∞
0 ? e2) Yn

L2

→
n→∞

0 ? e3) Yn →
n→∞

0 almost surely?

Solution a) By independence, we obtain

P
(⋂

n≥1 A
c
n

)
=

∏
n≥1

P(Ac
n) =

∏
n≥1

(1− P(An)) ≤
∏
n≥1

exp(−P(An)) = exp
(
−
∑

n≥1 P(An)
)
= 0

where we have used the fact that 1− x ≤ exp(−x) for 0 ≤ x ≤ 1 . Therefore, P
(⋃

n≥1 An

)
= 1 .

Note: The first equality above is “obviously true”, but actually needs a proof (not required in the home-
work): if (An, n ≥ 1) is a countable sequence of independent events, then it holds that P(∩n≥1An) =∏

n≥1 P(An) . Here is why: define Bn = ∩n
k=1Ak . Observe that ∩n≥1An = ∩n≥1Bn and Bn ⊃ Bn+1 for

every n ≥ 1 , so by the continuity property of P ,

P(∩n≥1An) = P(∩n≥1Bn) = lim
n→∞

P(Bn) = lim
n→∞

n∏
k=1

P(Ak) =
∏
n≥1

P(An)

b) By exactly the same argument as above, we can prove P
(⋂

n≥N Ac
n

)
= 0 , ∀N ≥ 1 , and we have seen

in class that this holds true if and only if P
(⋃

N≥1

⋂
n≥N Ac

n

)
= 0 , i.e. P

(⋂
N≥1

⋃
n≥N An

)
= 1 .
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c) If for some ε > 0 ,
∑

n≥1 P({|Xn| ≥ ε}) = +∞ , then by part b), P({|Xn| ≥ ε infinitely often}) = 1 .
This says that almost sure convergence (towards the limiting value 0 ) of the sequence Xn does not
hold, as for this convergence to hold, we would need exactly the opposite, namely that for every ε > 0 ,
P({|Xn| ≥ ε infinitely often}) = 0 .

d1) For any fixed ε > 0 , P({|Xn| ≥ ε}) = pn for sufficiently large n , so the minimal condition ensuring
convergence in probability is simply pn →

n→∞
0 (said otherwise, pn = o(1) ).

d2) E((Xn − 0)2) = n2 pn , so the minimal condition for L2 convergence is pn = o( 1
n2 ) .

d3) Using the two Borel-Cantelli lemmas (both applicable here as the Xn are independent), we see
that the minimal condition for almost sure convergence is

∑
n≥1 pn < +∞ , satisfied in particular if

pn = O(n−1−δ) .

e1) We have in this case, for any fixed ε > 0 :

P({|Yn| ≥ ε}) = 2

∫ +∞

ε

dx
1

π

λn

λ2
n + x2

=
2

π

(
π

2
− arctan

(
ε

λn

))
→

n→inf
0

if and only if λn →
n→∞

0 .

e2) E(Y 2
n ) = +∞ in all cases, so L2 convergence does not hold.

e3) Observe first that by the change of variable y = λnx ,

P({|Yn| ≥ ε}) = 2

∫ +∞

ε

dy
λn

π (λ2
n + y2)

= 2

∫ +∞

ε/λn

dx
1

π(1 + x2)
≃ 2

∫ +∞

ε/λn

dx
λn

πx2
=

2λn

π ε

when λn is small. So the minimal condition for almost sure convergence is
∑

n≥1 λn < +∞ , satisfied in

particular if λn = O(n−1−δ) .

Problem 3: Tail σ -field

a) Let (Xn, n ≥ 1) be a sequence of bounded i.i.d. random variables such that E(X1) = 0 and Var(X1) =
1 , and let Sn = X1 + . . .+Xn for n ≥ 1 . Show that the event

A =

{
Sn

n
converges

}
belongs to the tail σ -field T = ∩n≥1σ(Xn, Xn+1, . . .) (implying that P(A) ∈ {0, 1} by Kolomgorov’s
0-1 law; but the law of large numbers tells you more in this case, namely that P(A) = 1 .).

b) Assume now that (Xn, n ≥ 1) is a sequence of bounded, uncorrelated and identically distributed
random variables such that E(X1) = 0 and Var(X1) = 1 . Under this more general assumption, Kol-
mogorov’s 0-1 law may not necessarily hold. Prove it by exhibiting a sequence of random variables
(Xn, n ≥ 1) satisfying these assumptions and an event B ∈ T such that 0 < P(B) < 1 .

Solution a) Because the random variables Xn are identically distributed and bounded, it holds that
there exists M > 0 such that |Xn(ω)| ≤ M for all n ≥ 1 and ω ∈ Ω. (Note: all this could hold with
probability 1 instead of ∀ω ∈ Ω). So it holds that

Sn

n
− 1

n

n∑
j=2

Xj =
X1

n
→

n→∞
0 almost surely
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Likewise, it holds for any k ≥ 1 that

Sn

n
− 1

n

n∑
j=k

Xj →
n→∞

0 almost surely

meaning that

A =

{
Sn

n
converges

}
=

 1

n

n∑
j=k

Xj converges

 ∈ σ(Xk, Xk+1, . . .)

As this holds for every k ≥ 1 , this proves that A ∈ T .

b) We could actually show that P(A) = 1 even when the Xn are just uncorrelated random variables,
not necessarily independent. In order to find a counter-example, there remains therefore to find another
event B .

To this end, let us consider the sequence (Yn, n ≥ 1) of i.i.d. random variables such that P({Y1 = +a}) =
2/3 and P({Y1 = −2a}) = 1/3 , and let Z be a random variable independent of the sequence (Yn, n ≥ 1)
such that P({Z = +1}) = P({Z = −1}) = 1/2 . Let us finally define Xn = Yn · Z for n ≥ 1 .

Choosing a = 1/
√
2 , the random variables Xn have zero mean, unit variance and are uncorrelated, as

E(Xn) = E(Yn) · E(Z) = 0, Var(Xn) = E(X2
n) = E(Y 2

n ) · E(Z2) =

(
a2

2

3
+ 4a2

1

3

)
· 1 = 2a2 = 1

and for n ̸= m :

E(Xn ·Xm) = E(Yn · Ym) · E(Z2) = E(Yn) · E(Ym) · 1 = (2a/3− 2a/3)2 = 0

Now, let B = {Z = +1} . The event B belongs to the tail σ -field T for the following reason: for any
value of n ≥ 1 , the value of Xn = Yn · Z determines the value of Z , as

Z = +1 if and only if Xn = +a or Xn = −2a

and likewise,
Z = −1 if and only if Xn = −a or Xn = +2a

So Z is measurable with respect to σ(Xn) ⊂ σ(Xn, Xn+1, . . .) for any n ≥ 1 , so Z is measurable with
respect to T = ∩n≥1σ(Xn, Xn+1, . . .) , i.e., B = {Z = +1} ∈ T , but P(B) = 1/2 ̸∈ {0, 1} .

Problem 4: Another extension of the weak law of large numbers

Let (Tn, n ≥ 1) be another sequence of random variables, independent of the sequence (Xn, n ≥ 1) ,
with all Tn taking values in the set of natural numbers N∗ = {1, 2, 3, . . .} . Define

p
(n)
k = P({Tn = k}) for n, k ≥ 1

so
∑
k≥1

p
(n)
k = 1 ∀n ≥ 1


a) Find a sufficient condition on the numbers p

(n)
k guaranteeing that

X1 + . . .+XTn

Tn

P→
n→∞

µ (1)

Hint: You should use the law of total probability here: if A is an event and the events (Bk, k ≥ 1) form
a partition of Ω , then:

P(A) =
∑
k≥1

P(A |Bk)P(Bk)
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b) Apply the above criterion to the following case: each Tn is the sum of two independent geometric
random variables Gn1 +Gn2 , where both Gn are distributed as

P({Gn = k}) = qk−1
n (1− qn) k ≥ 1

where 0 < qn < 1 .

b1) Compute first the distribution of Tn , as well as E(Tn) , for each n ≥ 1 .

b2) What condition on the sequence (qn, n ≥ 1) ensures that conclusion (1) holds?

Hint: Solving question b1) above may help you guessing what the answer to b2) should be.

Solution a) For ε > 0 and n ≥ 1 fixed, let us compute, using the law of total probability:

P
({∣∣∣∣X1 + . . .+XTn

Tn
− µ

∣∣∣∣ ≥ ε

})
=

∑
k≥1

P
({∣∣∣∣X1 + . . .+XTn

Tn
− µ

∣∣∣∣ ≥ ε

} ∣∣∣∣ {Tn = k}
)
· P({Tn = k})

=
∑
k≥1

P
({∣∣∣∣X1 + . . .+Xk

k
− µ

∣∣∣∣ ≥ ε

} ∣∣∣∣ {Tn = k}
)
· P({Tn = k})

=
∑
k≥1

P
({∣∣∣∣X1 + . . .+Xk

k
− µ

∣∣∣∣ ≥ ε

})
· p(n)k

by independence of Tn and the sequence (Xn, n ≥ 1) . From the proof of the weak law of large numbers,
we know that for every k ≥ 1 :

P
({∣∣∣∣X1 + . . .+Xk

k
− µ

∣∣∣∣ ≥ ε

})
≤ σ2

k ε2

so

P
({∣∣∣∣X1 + . . .+XTn

Tn
− µ

∣∣∣∣ ≥ ε

})
≤ σ2

ε2

∑
k≥1

p
(n)
k

k

A sufficient condition ensuring convergence in probability is therefore: lim
n→∞

∑
k≥1

p
(n)
k

k
= 0 .

b1) Let us compute for n ≥ 1 and k ≥ 2 : (noting that the probability is equal to zero for k = 1)

p
(n)
k = P({Tn = k}) =

k−1∑
j=1

P({Gn1 = j, Tn = k}) =
k−1∑
j=1

P({Gn1 = j, Gn2 = k − j})

=

k−1∑
j=1

P({Gn1 = j}) · P({Gn2 = k − j}) =
k−1∑
j=1

qj−1
n (1− qn) q

k−j−1
n (1− qn)

= (k − 1) qk−2
n (1− qn)

2

This implies that

E(Tn) =
∑
k≥2

k (k − 1) qk−2
n (1− qn)

2 =
∂2

∂z2

∑
k≥2

zk

∣∣∣∣
z=qn

(1− qn)
2

=
∂2

∂z2

(
1

1− z
− 1− z

) ∣∣∣∣
z=qn

(1− qn)
2 =

2

(1− qn)3
(1− qn)

2 =
2

1− qn

Note: This result could also have been obtained using E(Tn) = E(Gn1) + E(Gn2) together with the fact
that a geometric random variable with parameter q has expectation 1/(1− q) . [NB: geometric random
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variables with parameter q can be defined either on N∗ = {1, 2, 3, . . .} (as it is the case here) or on
N = {0, 1, 2, . . .} , as it was the case in Ex. 3 of Homework 4; their expectation is equal to q/(1 − q) in
the latter case]

b2) From the above computations, we see that

∑
k≥1

p
(n)
k

k
=

∑
k≥2

k − 1

k
qk−2
n (1− qn)

2 ≤
∑
k≥2

qk−2
n (1− qn)

2 =
1

1− qn
(1− qn)

2 = 1− qn

so convergence in probability occurs if qn →
n→∞

1 . This is in accordance with the fact that E(Tn) →
n→∞

+∞
in this case (see part a).
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