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Solution Set 9

Problem 1: Convergence of random variables

Let (X,, n > 1) be independent random variables such that X,, ~ Bern(1 — where a > 0.

1
wre )
Let us also define Y,, = H?Zl X; for n>1.

a) What minimal condition on the parameter o > 0 ensures that Y, 5 07

n—oo

Hint: Use the approximation 1 —z ~ exp(—z) for = small.
2
b) Under the same condition as that found in a), does it also hold that Y, Lo
n—oo

¢) Under the same condition as that found in a), does it also hold that Y,, — 0 almost surely ?
n— oo

Hint: 1If Y,, =0, what can you deduce on Y,, for m >n 7

Solution a) Let us compute for ¢ > 0:

P({|Y; — 0] > £}) < P{Y, > 0)) = - IPax =1

j]_£[1<1<j+11))~exp Zn: G+ 1De

Jj=1

where the hint was used in the last (approximate) equality. If o > 1, then Z?Zl ﬁ
fixed value < 400 as n — oo, so P({Y,, > 0}) does not converge to 0 as n — co.

converges to a

On the contrary, if 0 < o < 1, then 377, ﬁ —  +00, in which case P({Y,, > 0}) — 0, so
n—o00 n—o00

Y. L0 in this case.

n— oo
2
b) The answer is yes. Indeed, we have E((Y,, —0)?) = E(Y,2) = P({Y,, = 1}), s0 Y, i—> 0 if and only
if Y, 5 0.

n—oo

¢) The answer is again yes. Indeed, if for a given realization w, Y, (w) = 0, then Y;,(w) = 0 for every
m > n, and therefore lim, . ¥, (w) = 0. This implies that

P({hmnﬂoo Y, = O}) > P({Yn = O}’)

for any fixed value of n > 1. If 0 < @ < 1, we have seen in question a) that P({Y;, =0}) — 1. So

n—oo
the above inequality implies that Y;, — 0 almost surely in this case.
n—oo



Remark. Please note finally that when « > 1, convergence in probability does not hold, so automatically
in this case, quadratic convergence and almost sure convergence do not hold either.

Problem 2: Second B-C lemma

a) Show that if (A,, n > 1) are independent events in F and >_ -, P(A,) = oo, then

P 4n) =1
Hints: - Start by observing that the statement is equlvalent to P (ﬂn21 Afl) =0.
- Use the inequality 1 —x < e™%, valid for all = € R.

b) From the same set of assumptions, reach the following stronger conclusion with a little extra effort:
P({w € Q: w € A, infinitely often}) = ]P’( ﬂ U An) =
N>1n>N
which is actually the statement of the second Borel-Cantelli lemma.
c) Let (Xy, n > 1) be asequence of independent random variables such that for some ¢ >0, >° -, P({|Xn| >

€}) = 4o0. What can you conclude on the almost sure convergence of the sequence X,, towards the
limiting value 07

d) Let (X,,n > 1) be a sequence of independent random variables such that P({X,, = n}) = p, =
1 -P{X, =0}) for n > 1. What minimal condition on the sequence (p,,n > 1) ensures that

2
dl) X, 5 07 d2) X, L 07 d3) X, — 0 almost surely?
n—oo

n—oo n—oo

e) Let (Y, n > 1) be a sequence of independent random variables such that Y;, ~ Cauchy(A,) for
n > 1. What minimal condition on the sequence (A,, n > 1) ensures that

2
el) Y, 5 07 e2) Y, Lo e3) Y, — 0 almost surely?
n—00 n—00 n—r00

Solution a) By independence, we obtain

P (Mass 45) = T] P(45) = TT( = P(A) < T] exp(—P(An) = exp (= 5,5, P(An)) =0

n>1 n>1 n>1

where we have used the fact that 1 — x < exp(—z) for 0 <z < 1. Therefore, P (Un21 An) =1.

Note: The first equality above is “obviously true”, but actually needs a proof (not required in the home-
work): if (A,, n > 1) is a countable sequence of independent events, then it holds that P(N,>14,) =
[[,,>1P(A,). Here is why: define B,, = N}_; Ay . Observe that N,>14, = Np>1B, and B, D B, for
every n > 1, so by the continuity property of P,

P(Np>14,) = P(Ny>1B,) = lim P(B,) = lim HP (Ar) = [ P(4n)

n— 00 n—o00
n>1

b) By exactly the same argument as above, we can prove P (ﬂn> N A;) =0, VN > 1, and we have seen

in class that this holds true if and only if P (UN>1 ﬂn>N ) =0,ie. P (ﬂN>1 Un>N ) =1.



c) If for some € >0, > -, P({|X,| > ¢}) = +o0, then by part b), P({|X,| > ¢ infinitely often}) = 1.
This says that almost sure convergence (towards the limiting value 0) of the sequence X, does not
hold, as for this convergence to hold, we would need exactly the opposite, namely that for every € > 0,
P({|X,| > ¢ infinitely often}) = 0.

dl1) For any fixed ¢ > 0, P({|X,| > ¢}) = p,, for sufficiently large n, so the minimal condition ensuring
convergence in probability is simply p, — 0 (said otherwise, p,, = o(1)).
n— oo

d2) E((X, —0)?) =n?p,, so the minimal condition for L? convergence is p, = o(-%).

d3) Using the two Borel-Cantelli lemmas (both applicable here as the X, are independent), we see
that the minimal condition for almost sure convergence is ) -, p, < 400, satisfied in particular if

Pn = O(n_l_‘s).

el) We have in this case, for any fixed € > 0:

oo ) 2 (m €
P{|Y,| >¢e}) =2 —m—==|5- T
({1l > €}) / dz — N2 r <2 arCtan(An» ot

if and only if A\, — 0.
n—oo

e2) E(Y,2) = +oo in all cases, so L? convergence does not hold.

e3) Observe first that by the change of variable y = A\,

o0 An oo 1 A 20,
P({|Y,| >e}) =2 — =2 T 2 P R
({[¥al = }) /6 W (AZ +92) /E/A,l - m(1+ x2) /E/An i

when A, is small. So the minimal condition for almost sure convergence is > <, Ay, < 400, satisfied in
particular if A, = O(n=17?).

Problem 3: Tail o-field

a) Let (X,, n > 1) be asequence of bounded i.i.d. random variables such that E(X;) =0 and Var(X;) =
1,andlet S, = X1+ ...+ X,, for n > 1. Show that the event

A= {Sn converges}
n

belongs to the tail o-field 7 = Ny>10(Xp, Xt1,...) (implying that P(A) € {0,1} by Kolomgorov’s
0-1 law; but the law of large numbers tells you more in this case, namely that P(A) =1.).

b) Assume now that (X,,n > 1) is a sequence of bounded, uncorrelated and identically distributed
random variables such that E(X;) = 0 and Var(X;) = 1. Under this more general assumption, Kol-
mogorov’s 0-1 law may not necessarily hold. Prove it by exhibiting a sequence of random variables
(X, n > 1) satisfying these assumptions and an event B € T such that 0 <P(B) < 1.

Solution a) Because the random variables X,, are identically distributed and bounded, it holds that
there exists M > 0 such that |X,(w)| < M for all n > 1 and w € Q. (Note: all this could hold with
probability 1 instead of Yw € ). So it holds that

Sy 1 X
— = fZXj =21 5 0 almost surely
nooni

n n—oo



Likewise, it holds for any k& > 1 that

Sn 1
7"—75 X; — 0 almost surely
n n “ % n—oo

=

meaning that
S 1 n
A=< =" converges p = { — X, converges » € o( Xy, Xk+1,---
{ - g - ; i g (Xhs X415+ - )

As this holds for every k > 1, this proves that A € T .

b) We could actually show that P(A) = 1 even when the X,, are just uncorrelated random variables,
not necessarily independent. In order to find a counter-example, there remains therefore to find another
event B.

To this end, let us consider the sequence (Y, n > 1) of i.i.d. random variables such that P({Y; = +a}) =
2/3 and P({Y; = —2a}) = 1/3, and let Z be a random variable independent of the sequence (Y, n > 1)
such that P({Z = +1}) = P({Z = —1}) = 1/2. Let us finally define X,, =Y, - Z for n > 1.

Choosing a = 1/v/2, the random variables X,, have zero mean, unit variance and are uncorrelated, as
2 1
E(X,) =E(Y,) E(Z) =0, Var(X,)=E(X2)=E(Y?) E(Z?) = <a2 3+ 4a* 3) 1=2a2=1

and for n # m:
E(X, - Xm) =E(Y, - Yy) -E(Z?) =E(Y,) -E(Yn) -1 = (2a/3 — 2a/3)? = 0

Now, let B ={Z = +1}. The event B belongs to the tail o-field T for the following reason: for any
value of n > 1, the value of X,, =Y, - Z determines the value of Z, as

Z =41 ifand onlyif X, =4a or X, =-2a
and likewise,
Z =-1 ifandonlyif X, =—-a or X, =+42a

So Z is measurable with respect to o(X,,) C 0(Xp, Xnt1,...) for any n > 1, s0 Z is measurable with
respect to T = Np>10(Xp, Xnt1,...), le., B={Z =41} € T, but P(B) =1/2 ¢ {0,1}.

Problem 4: Another extension of the weak law of large numbers

Let (T, n > 1) be another sequence of random variables, independent of the sequence (X,,n > 1),
with all T, taking values in the set of natural numbers N* = {1,2,3,...}. Define

Y =PUT, =k}) fornk>1 [s0d pf’=1 ¥n>1

k>1

a) Find a sufficient condition on the numbers p,(:") guaranteeing that

X1+~--+XT" E} (1)
T, n—o0 H
Hint: You should use the law of total probability here: if A is an event and the events (B, k > 1) form
a partition of €, then:
P(A) =) P(A|By)P(By)
k>1



b) Apply the above criterion to the following case: each T, is the sum of two independent geometric
random variables G,1 + G2, where both G,, are distributed as

P{Gn=k}) =qy ' (1—qn) k=1
where 0 < g, < 1.
b1l) Compute first the distribution of T, , as well as E(T},), for each n > 1.
b2) What condition on the sequence (g,, n > 1) ensures that conclusion (1) holds?

Hint: Solving question bl) above may help you guessing what the answer to b2) should be.

Solution a) For € > 0 and n > 1 fixed, let us compute, using the law of total probability:

(5 o) e (] )
S

by independence of T,, and the sequence (X,, n > 1). From the proof of the weak law of large numbers,

we know that for every k£ > 1:
X14+...+ Xy o?
P . IS < 2
(P ze) =

SO
X1—|——|—XT 0'2 p,(Cn)
P —_— " | >e < — £

([P -uze) <525
E>1
p(n)

A sufficient condition ensuring convergence in probability is therefore: lim Z k_—0.

n—oo

k>1

bl) Let us compute for n > 1 and k > 2: (noting that the probability is equal to zero for k =1)

k—1 k—1
pV =P(T, =k}) =Y P{Gmi =j, T =k}) = > P({Gn1 = j, Gnz2 = k — j})
Jj=1 j=1

S

-1

|
(]

k—1
P({Gn1 = j}) -P({Gn2 =k — j}) = Zqi‘l (1—qn) gy 7" (1= gn)

k=1)a,7 (1= qa)°

—~ .

This implies that

. 02
E(T) =) k(k=1)aq?(1-gn)* =55 | Y& (1— gn)?
E>2 E>2 2=qn
0? 1 ) ) 2
_(922(1_25—1_Z> z:qn(l_qn) _(1—Qn)3(1_qn) _1—Qn

Note: This result could also have been obtained using E(7},) = E(Gp1) + E(Gp2) together with the fact
that a geometric random variable with parameter ¢ has expectation 1/(1 —¢). [NB: geometric random



variables with parameter ¢ can be defined either on N* = {1,2,3,...} (as it is the case here) or on
N =1{0,1,2,...}, as it was the case in Ex. 3 of Homework 4; their expectation is equal to ¢/(1 — ¢) in
the latter case]

b2) From the above computations, we see that

pk _ k-1 k2 Z 1 2 _
E k qn 17Qn < qdn 17%1 —1_qn(17Qn) =1—-gqn
E>1 k>2 k>2

so convergence in probability occurs if g, — 1. This is in accordance with the fact that E(7,,) — +oo

n—oo n—oo
in this case (see part a).



