Solution Set 9

Problem 1: Convergence of random variables

Let $(X_n, n \ge 1)$ be independent random variables such that $X_n \sim \text{Bern}(1 - \frac{1}{(n+1)^{\alpha}})$, where $\alpha > 0$. Let us also define $Y_n = \prod_{j=1}^n X_j$ for $n \ge 1$.

a) What minimal condition on the parameter $\alpha>0$ ensures that $Y_n\overset{\mathbb{P}}{\underset{n\to\infty}{\longrightarrow}}0$?

Hint: Use the approximation $1 - x \simeq \exp(-x)$ for x small.

- b) Under the same condition as that found in a), does it also hold that $Y_n \xrightarrow[n \to \infty]{L^2} 0$?
- c) Under the same condition as that found in a), does it also hold that $Y_n \to 0$ almost surely? Hint: If $Y_n = 0$, what can you deduce on Y_m for $m \ge n$?

Solution a) Let us compute for $\varepsilon > 0$:

$$\mathbb{P}(\{|Y_n - 0| > \varepsilon\}) \le \mathbb{P}(\{Y_n > 0\}) = \mathbb{P}(\{Y_n = 1\}) = \prod_{j=1}^n \mathbb{P}(\{X_j = 1\})$$
$$= \prod_{j=1}^n \left(1 - \frac{1}{(j+1)^\alpha}\right) \simeq \exp\left(-\sum_{j=1}^n \frac{1}{(j+1)^\alpha}\right)$$

where the hint was used in the last (approximate) equality. If $\alpha > 1$, then $\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}}$ converges to a fixed value $< +\infty$ as $n \to \infty$, so $\mathbb{P}(\{Y_n > 0\})$ does not converge to 0 as $n \to \infty$.

On the contrary, if $0 < \alpha \le 1$, then $\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}} \xrightarrow[n \to \infty]{} +\infty$, in which case $\mathbb{P}(\{Y_n > 0\}) \xrightarrow[n \to \infty]{} 0$, so $Y_n \xrightarrow[n \to \infty]{} 0$ in this case.

- b) The answer is yes. Indeed, we have $\mathbb{E}((Y_n-0)^2)=\mathbb{E}(Y_n^2)=\mathbb{P}(\{Y_n=1\})$, so $Y_n \overset{L^2}{\underset{n\to\infty}{\longrightarrow}} 0$ if and only if $Y_n \overset{\mathbb{P}}{\underset{n\to\infty}{\longrightarrow}} 0$.
- c) The answer is again yes. Indeed, if for a given realization ω , $Y_n(\omega) = 0$, then $Y_m(\omega) = 0$ for every $m \ge n$, and therefore $\lim_{n \to \infty} Y_n(\omega) = 0$. This implies that

$$\mathbb{P}(\{\lim_{n\to\infty} Y_n = 0\}) \ge \mathbb{P}(\{Y_n = 0\})$$

for any fixed value of $n \ge 1$. If $0 < \alpha \le 1$, we have seen in question a) that $\mathbb{P}(\{Y_n = 0\}) \xrightarrow[n \to \infty]{} 1$. So the above inequality implies that $Y_n \xrightarrow[n \to \infty]{} 0$ almost surely in this case.

Remark. Please note finally that when $\alpha > 1$, convergence in probability does not hold, so automatically in this case, quadratic convergence and almost sure convergence do not hold either.

Problem 2: Second B-C lemma

a) Show that if $(A_n, n \ge 1)$ are independent events in \mathcal{F} and $\sum_{n \ge 1} \mathbb{P}(A_n) = \infty$, then

$$\mathbb{P}\Big(\bigcup A_n\Big)=1$$

Hints: - Start by observing that the statement is equivalent to $\mathbb{P}\left(\bigcap_{n\geq 1}A_n^c\right)=0$.

- Use the inequality $1 x \le e^{-x}$, valid for all $x \in \mathbb{R}$.
- b) From the same set of assumptions, reach the following stronger conclusion with a little extra effort:

$$\mathbb{P}(\{\omega \in \Omega : \omega \in A_n \text{ infinitely often}\}) = \mathbb{P}\Big(\bigcap_{N \geq 1} \bigcup_{n \geq N} A_n\Big) = 1$$

which is actually the statement of the second Borel-Cantelli lemma.

- c) Let $(X_n, n \ge 1)$ be a sequence of *independent* random variables such that for some $\varepsilon > 0$, $\sum_{n\ge 1} \mathbb{P}(\{|X_n| \ge \varepsilon\}) = +\infty$. What can you conclude on the almost sure convergence of the sequence X_n towards the limiting value 0?
- d) Let $(X_n, n \ge 1)$ be a sequence of independent random variables such that $\mathbb{P}(\{X_n = n\}) = p_n = 1 \mathbb{P}(\{X_n = 0\})$ for $n \ge 1$. What minimal condition on the sequence $(p_n, n \ge 1)$ ensures that
- d1) $X_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$? d2) $X_n \xrightarrow[n \to \infty]{L^2} 0$? d3) $X_n \xrightarrow[n \to \infty]{} 0$ almost surely?
- e) Let $(Y_n, n \ge 1)$ be a sequence of independent random variables such that $Y_n \sim \text{Cauchy}(\lambda_n)$ for $n \ge 1$. What minimal condition on the sequence $(\lambda_n, n \ge 1)$ ensures that
- e1) $Y_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$? e2) $Y_n \xrightarrow[n \to \infty]{L^2} 0$? e3) $Y_n \xrightarrow[n \to \infty]{0} 0$ almost surely?

Solution a) By independence, we obtain

$$\mathbb{P}\left(\bigcap_{n\geq 1}A_n^c\right) = \prod_{n\geq 1}\mathbb{P}(A_n^c) = \prod_{n\geq 1}(1-\mathbb{P}(A_n)) \leq \prod_{n\geq 1}\exp(-\mathbb{P}(A_n)) = \exp\left(-\sum_{n\geq 1}\mathbb{P}(A_n)\right) = 0$$

where we have used the fact that $1-x \leq \exp(-x)$ for $0 \leq x \leq 1$. Therefore, $\mathbb{P}\left(\bigcup_{n \geq 1} A_n\right) = 1$.

Note: The first equality above is "obviously true", but actually needs a proof (not required in the homework): if $(A_n, n \ge 1)$ is a countable sequence of independent events, then it holds that $\mathbb{P}(\cap_{n\ge 1} A_n) = \prod_{n\ge 1} \mathbb{P}(A_n)$. Here is why: define $B_n = \cap_{k=1}^n A_k$. Observe that $\cap_{n\ge 1} A_n = \cap_{n\ge 1} B_n$ and $B_n \supset B_{n+1}$ for every $n\ge 1$, so by the continuity property of \mathbb{P} ,

$$\mathbb{P}(\cap_{n\geq 1} A_n) = \mathbb{P}(\cap_{n\geq 1} B_n) = \lim_{n\to\infty} \mathbb{P}(B_n) = \lim_{n\to\infty} \prod_{k=1}^n \mathbb{P}(A_k) = \prod_{n\geq 1} \mathbb{P}(A_n)$$

b) By exactly the same argument as above, we can prove $\mathbb{P}\left(\bigcap_{n\geq N}A_n^c\right)=0$, $\forall N\geq 1$, and we have seen in class that this holds true if and only if $\mathbb{P}\left(\bigcup_{N\geq 1}\bigcap_{n\geq N}A_n^c\right)=0$, i.e. $\mathbb{P}\left(\bigcap_{N\geq 1}\bigcup_{n\geq N}A_n\right)=1$.

- c) If for some $\varepsilon > 0$, $\sum_{n \ge 1} \mathbb{P}(\{|X_n| \ge \varepsilon\}) = +\infty$, then by part b), $\mathbb{P}(\{|X_n| \ge \varepsilon \text{ infinitely often}\}) = 1$. This says that almost sure convergence (towards the limiting value 0) of the sequence X_n does not hold, as for this convergence to hold, we would need exactly the opposite, namely that for every $\varepsilon > 0$, $\mathbb{P}(\{|X_n| \ge \varepsilon \text{ infinitely often}\}) = 0$.
- d1) For any fixed $\varepsilon > 0$, $\mathbb{P}(\{|X_n| \ge \varepsilon\}) = p_n$ for sufficiently large n, so the minimal condition ensuring convergence in probability is simply $p_n \underset{n \to \infty}{\to} 0$ (said otherwise, $p_n = o(1)$).
- d2) $\mathbb{E}((X_n-0)^2)=n^2\,p_n$, so the minimal condition for L^2 convergence is $p_n=o(\frac{1}{n^2})$.
- d3) Using the two Borel-Cantelli lemmas (both applicable here as the X_n are independent), we see that the minimal condition for almost sure convergence is $\sum_{n\geq 1} p_n < +\infty$, satisfied in particular if $p_n = O(n^{-1-\delta})$.
- e1) We have in this case, for any fixed $\varepsilon > 0$:

$$\mathbb{P}(\{|Y_n| \ge \varepsilon\}) = 2 \int_{\varepsilon}^{+\infty} dx \, \frac{1}{\pi} \, \frac{\lambda_n}{\lambda_n^2 + x^2} = \frac{2}{\pi} \left(\frac{\pi}{2} - \arctan\left(\frac{\varepsilon}{\lambda_n}\right) \right) \underset{n \to \inf}{\to} 0$$

if and only if $\lambda_n \to 0$.

- e2) $\mathbb{E}(Y_n^2) = +\infty$ in all cases, so L^2 convergence does not hold.
- e3) Observe first that by the change of variable $y = \lambda_n x$,

$$\mathbb{P}(\{|Y_n| \ge \varepsilon\}) = 2 \int_{\varepsilon}^{+\infty} dy \, \frac{\lambda_n}{\pi \, (\lambda_n^2 + y^2)} = 2 \int_{\varepsilon/\lambda_n}^{+\infty} dx \, \frac{1}{\pi (1 + x^2)} \simeq 2 \int_{\varepsilon/\lambda_n}^{+\infty} dx \, \frac{\lambda_n}{\pi x^2} = \frac{2\lambda_n}{\pi \, \varepsilon}$$

when λ_n is small. So the minimal condition for almost sure convergence is $\sum_{n\geq 1} \lambda_n < +\infty$, satisfied in particular if $\lambda_n = O(n^{-1-\delta})$.

Problem 3: Tail σ -field

a) Let $(X_n, n \ge 1)$ be a sequence of bounded i.i.d. random variables such that $\mathbb{E}(X_1) = 0$ and $\mathrm{Var}(X_1) = 1$, and let $S_n = X_1 + \ldots + X_n$ for $n \ge 1$. Show that the event

$$A = \left\{ \frac{S_n}{n} \text{ converges} \right\}$$

belongs to the tail σ -field $\mathcal{T} = \bigcap_{n \geq 1} \sigma(X_n, X_{n+1}, \ldots)$ (implying that $\mathbb{P}(A) \in \{0, 1\}$ by Kolomgorov's 0-1 law; but the law of large numbers tells you more in this case, namely that $\mathbb{P}(A) = 1$.).

b) Assume now that $(X_n, n \ge 1)$ is a sequence of bounded, uncorrelated and identically distributed random variables such that $\mathbb{E}(X_1) = 0$ and $\mathrm{Var}(X_1) = 1$. Under this more general assumption, Kolmogorov's 0-1 law may not necessarily hold. Prove it by exhibiting a sequence of random variables $(X_n, n \ge 1)$ satisfying these assumptions and an event $B \in \mathcal{T}$ such that $0 < \mathbb{P}(B) < 1$.

Solution a) Because the random variables X_n are identically distributed and bounded, it holds that there exists M>0 such that $|X_n(\omega)|\leq M$ for all $n\geq 1$ and $\omega\in\Omega$. (Note: all this could hold with probability 1 instead of $\forall\omega\in\Omega$). So it holds that

$$\frac{S_n}{n} - \frac{1}{n} \sum_{j=2}^n X_j = \frac{X_1}{n} \underset{n \to \infty}{\longrightarrow} 0$$
 almost surely

Likewise, it holds for any $k \ge 1$ that

$$\frac{S_n}{n} - \frac{1}{n} \sum_{j=k}^n X_j \underset{n \to \infty}{\to} 0$$
 almost surely

meaning that

$$A = \left\{ \frac{S_n}{n} \text{ converges} \right\} = \left\{ \frac{1}{n} \sum_{j=k}^n X_j \text{ converges} \right\} \in \sigma(X_k, X_{k+1}, \ldots)$$

As this holds for every $k \geq 1$, this proves that $A \in \mathcal{T}$.

b) We could actually show that $\mathbb{P}(A) = 1$ even when the X_n are just uncorrelated random variables, not necessarily independent. In order to find a counter-example, there remains therefore to find another event B.

To this end, let us consider the sequence $(Y_n, n \ge 1)$ of i.i.d. random variables such that $\mathbb{P}(\{Y_1 = +a\}) = 2/3$ and $\mathbb{P}(\{Y_1 = -2a\}) = 1/3$, and let Z be a random variable independent of the sequence $(Y_n, n \ge 1)$ such that $\mathbb{P}(\{Z = +1\}) = \mathbb{P}(\{Z = -1\}) = 1/2$. Let us finally define $X_n = Y_n \cdot Z$ for $n \ge 1$.

Choosing $a = 1/\sqrt{2}$, the random variables X_n have zero mean, unit variance and are uncorrelated, as

$$\mathbb{E}(X_n) = \mathbb{E}(Y_n) \cdot \mathbb{E}(Z) = 0, \quad \text{Var}(X_n) = \mathbb{E}(X_n^2) = \mathbb{E}(Y_n^2) \cdot \mathbb{E}(Z^2) = \left(a^2 \frac{2}{3} + 4a^2 \frac{1}{3}\right) \cdot 1 = 2a^2 = 1$$

and for $n \neq m$:

$$\mathbb{E}(X_n \cdot X_m) = \mathbb{E}(Y_n \cdot Y_m) \cdot \mathbb{E}(Z^2) = \mathbb{E}(Y_n) \cdot \mathbb{E}(Y_m) \cdot 1 = (2a/3 - 2a/3)^2 = 0$$

Now, let $B = \{Z = +1\}$. The event B belongs to the tail σ -field \mathcal{T} for the following reason: for any value of $n \geq 1$, the value of $X_n = Y_n \cdot Z$ determines the value of Z, as

$$Z = +1$$
 if and only if $X_n = +a$ or $X_n = -2a$

and likewise,

$$Z = -1$$
 if and only if $X_n = -a$ or $X_n = +2a$

So Z is measurable with respect to $\sigma(X_n) \subset \sigma(X_n, X_{n+1}, \ldots)$ for any $n \geq 1$, so Z is measurable with respect to $\mathcal{T} = \bigcap_{n \geq 1} \sigma(X_n, X_{n+1}, \ldots)$, i.e., $B = \{Z = +1\} \in \mathcal{T}$, but $\mathbb{P}(B) = 1/2 \notin \{0, 1\}$.

Problem 4: Another extension of the weak law of large numbers

Let $(T_n, n \ge 1)$ be another sequence of random variables, independent of the sequence $(X_n, n \ge 1)$, with all T_n taking values in the set of natural numbers $\mathbb{N}^* = \{1, 2, 3, \ldots\}$. Define

$$p_k^{(n)} = \mathbb{P}(\{T_n = k\}) \text{ for } n, k \ge 1 \quad \left(\text{so } \sum_{k \ge 1} p_k^{(n)} = 1 \quad \forall n \ge 1\right)$$

a) Find a sufficient condition on the numbers $p_k^{(n)}$ guaranteeing that

$$\frac{X_1 + \ldots + X_{T_n}}{T_n} \xrightarrow[n \to \infty]{\mathbb{P}} \mu \tag{1}$$

Hint: You should use the law of total probability here: if A is an event and the events $(B_k, k \ge 1)$ form a partition of Ω , then:

$$\mathbb{P}(A) = \sum_{k>1} \mathbb{P}(A \mid B_k) \, \mathbb{P}(B_k)$$

b) Apply the above criterion to the following case: each T_n is the sum of two independent geometric random variables $G_{n1} + G_{n2}$, where both G_n are distributed as

$$\mathbb{P}(\{G_n = k\}) = q_n^{k-1} (1 - q_n) \quad k \ge 1$$

where $0 < q_n < 1$.

- b1) Compute first the distribution of T_n , as well as $\mathbb{E}(T_n)$, for each $n \geq 1$.
- b2) What condition on the sequence $(q_n, n \ge 1)$ ensures that conclusion (1) holds?

Hint: Solving question b1) above may help you guessing what the answer to b2) should be.

Solution a) For $\varepsilon > 0$ and $n \ge 1$ fixed, let us compute, using the law of total probability:

$$\mathbb{P}\left(\left\{\left|\frac{X_1+\ldots+X_{T_n}}{T_n}-\mu\right|\geq\varepsilon\right\}\right) = \sum_{k\geq 1}\mathbb{P}\left(\left\{\left|\frac{X_1+\ldots+X_{T_n}}{T_n}-\mu\right|\geq\varepsilon\right\}\right|\left\{T_n=k\right\}\right)\cdot\mathbb{P}(\left\{T_n=k\right\})$$

$$= \sum_{k\geq 1}\mathbb{P}\left(\left\{\left|\frac{X_1+\ldots+X_k}{k}-\mu\right|\geq\varepsilon\right\}\right|\left\{T_n=k\right\}\right)\cdot\mathbb{P}(\left\{T_n=k\right\})$$

$$= \sum_{k\geq 1}\mathbb{P}\left(\left\{\left|\frac{X_1+\ldots+X_k}{k}-\mu\right|\geq\varepsilon\right\}\right)\cdot p_k^{(n)}$$

by independence of T_n and the sequence $(X_n, n \ge 1)$. From the proof of the weak law of large numbers, we know that for every $k \ge 1$:

$$\mathbb{P}\left(\left\{\left|\frac{X_1 + \ldots + X_k}{k} - \mu\right| \ge \varepsilon\right\}\right) \le \frac{\sigma^2}{k \,\varepsilon^2}$$

SO

$$\mathbb{P}\left(\left\{\left|\frac{X_1 + \ldots + X_{T_n}}{T_n} - \mu\right| \ge \varepsilon\right\}\right) \le \frac{\sigma^2}{\varepsilon^2} \sum_{k > 1} \frac{p_k^{(n)}}{k}$$

A sufficient condition ensuring convergence in probability is therefore: $\lim_{n\to\infty}\sum_{k>1}\frac{p_k^{(n)}}{k}=0$.

b1) Let us compute for $n \ge 1$ and $k \ge 2$: (noting that the probability is equal to zero for k = 1)

$$p_k^{(n)} = \mathbb{P}(\{T_n = k\}) = \sum_{j=1}^{k-1} \mathbb{P}(\{G_{n1} = j, T_n = k\}) = \sum_{j=1}^{k-1} \mathbb{P}(\{G_{n1} = j, G_{n2} = k - j\})$$

$$= \sum_{j=1}^{k-1} \mathbb{P}(\{G_{n1} = j\}) \cdot \mathbb{P}(\{G_{n2} = k - j\}) = \sum_{j=1}^{k-1} q_n^{j-1} (1 - q_n) q_n^{k-j-1} (1 - q_n)$$

$$= (k-1) q_n^{k-2} (1 - q_n)^2$$

This implies that

$$\mathbb{E}(T_n) = \sum_{k \ge 2} k (k-1) q_n^{k-2} (1 - q_n)^2 = \frac{\partial^2}{\partial z^2} \left(\sum_{k \ge 2} z^k \right) \Big|_{z = q_n} (1 - q_n)^2$$
$$= \frac{\partial^2}{\partial z^2} \left(\frac{1}{1 - z} - 1 - z \right) \Big|_{z = q_n} (1 - q_n)^2 = \frac{2}{(1 - q_n)^3} (1 - q_n)^2 = \frac{2}{1 - q_n}$$

Note: This result could also have been obtained using $\mathbb{E}(T_n) = \mathbb{E}(G_{n1}) + \mathbb{E}(G_{n2})$ together with the fact that a geometric random variable with parameter q has expectation 1/(1-q). [NB: geometric random

variables with parameter q can be defined either on $\mathbb{N}^* = \{1, 2, 3, \ldots\}$ (as it is the case here) or on $\mathbb{N} = \{0, 1, 2, \ldots\}$, as it was the case in Ex. 3 of Homework 4; their expectation is equal to q/(1-q) in the latter case

b2) From the above computations, we see that

$$\sum_{k\geq 1} \frac{p_k^{(n)}}{k} = \sum_{k\geq 2} \frac{k-1}{k} q_n^{k-2} (1-q_n)^2 \le \sum_{k\geq 2} q_n^{k-2} (1-q_n)^2 = \frac{1}{1-q_n} (1-q_n)^2 = 1-q_n$$

so convergence in probability occurs if $q_n \underset{n \to \infty}{\to} 1$. This is in accordance with the fact that $\mathbb{E}(T_n) \underset{n \to \infty}{\to} +\infty$ in this case (see part a).