# Problem Set 4 Estimation and Decision Theory

For the Exercise Session on Oct 29 — Due: Tue, November 4, 10am, on Moodle

# 1 Problem for Class

### Problem 1: Tweedie's Formula

For the special case where X = D + N, where N is Gaussian noise of mean zero and variance  $\sigma^2$ , Tweedie's formula says that the conditional mean (that is, the MMSE estimator) can be expressed as

$$\mathbb{E}\left[D|X=x\right] = x + \sigma^2 \ell'(x),\tag{1}$$

where

$$\ell'(x) = \frac{d}{dx} \log f_X(x), \tag{2}$$

where  $f_X(x)$  denotes the marginal PDF of X. In this exercise, we derive this formula.

(a) Assume that  $f_{X|D}(x|d) = e^{\alpha dx - \psi(d)} f_0(x)$  for some functions  $\psi(d)$  and  $f_0(x)$  and some constant  $\alpha$  (such that  $f_{X|D}(x|d)$  is a valid PDF for every value of d). Define

$$\lambda(x) = \log \frac{f_X(x)}{f_0(x)},\tag{3}$$

where  $f_X(x)$  is the marginal PDF of X, i.e.,  $f_X(x) = \int f_{X|D}(x|\delta) f_D(\delta) d\delta$ . With this, establish that

$$\mathbb{E}\left[D|X=x\right] = \frac{1}{\alpha} \frac{d}{dx} \lambda(x). \tag{4}$$

(b) Show that the case where X = D + N, where N is Gaussian noise of mean zero and variance  $\sigma^2$ , is indeed of the form required in Part (a) by finding the corresponding  $\psi(d), f_0(x)$ , and  $\alpha$ . Show that in this case, we have

$$\frac{f_0'(x)}{f_0(x)} = -\frac{x}{\sigma^2},\tag{5}$$

and use this fact in combination with Part (a) to establish Tweedie's formula.

# 2 The Homework

## Problem 2: Bernoulli Data with Beta Prior

Let  $S \in [0,1]$  be distributed with a Beta distribution with parameters (1/2,1/2), which, as we have seen in class, is  $p(s) = \frac{1}{\pi} s^{-\frac{1}{2}} (1-s)^{-\frac{1}{2}}$ . We make n observations  $X_1, X_2, \ldots, X_n$  that are (conditionally) independent Bernoulli (S) random variables.

a) Calculate the conditional distribution  $p(s|x_1, x_2, ..., x_n)$ . Express it in terms of the integer t, which is the number of '1's in the sample  $(x_1, x_2, ..., x_n)$ .

*Hint:* For  $a,b \in \mathbb{R}^+$ , we have  $\int_0^1 y^{a-1} (1-y)^{b-1} dy = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ , where  $\Gamma(\cdot)$  denotes the Gamma function.

b) We would like to estimate S from  $X_1, X_2, \ldots, X_n$  such as to minimize the mean-squared error  $\mathbb{E}[(S - \hat{S}(X_1, X_2, \ldots, X_n)^2]]$ . Find the optimum estimate  $\hat{S}(X_1, X_2, \ldots, X_n)$ . Simplify your result as much as possible.

*Hint:* The Gamma function satisfies the property, for  $c \in \mathbb{R}^+$ , that  $\Gamma(c+1) = c\Gamma(c)$ .

# 3 Additional Problems

#### Problem 3: Parameter Estimation and Fisher Information

Find the Fisher information for the following families:

(a) 
$$f_{\theta}(x) = N(0, \theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{x^2}{2\theta}}$$

(b) 
$$f_{\theta}(x) = \theta e^{-\theta x}, x > 0$$

(c) What is the Cramèr Rao lower bound on  $\mathbb{E}_{\theta}(\hat{\theta}(X) - \theta)^2$ , where  $\hat{\theta}(X)$  is an unbiased estimator of  $\theta$  for (a) and (b)?

## Problem 4: Wiener Filter and Irrelevant Data

As we have seen in class, the (FIR) Wiener filter is given by

$$\mathbf{w} = R_x^{-1} \mathbf{r}_{dx}, \tag{6}$$

where  $R_x$  is the autocorrelation matrix of the data that's being used, and  $\mathbf{r}_{dx}$  is the cross-correlation between the data and the desired output. For this to be well defined,  $R_x$  should be full rank. In this problem, we study this question in more detail.

- (a) In many applications, the signal acquisition process is noisy. That is, the data x[n] = s[n] + w[n], where s[n] is an arbitrary signal, and w[n] is white noise. Prove that in this case, the p-dimensional autocorrelation matrix  $R_x$  is full rank (i.e., invertible) for any p. (Note: Be careful not to make any assumptions about the signal s[n].)
- (b) In some other cases,  $R_x$  could be rank-deficient. To study this, prove first that if the (FIR) Wiener filter based on the data  $\mathbf{x} = \{x[n]\}_{n=0}^{p-1}$  is  $\mathbf{w}$ , then the (FIR) Wiener filter based on the modified data  $A\mathbf{x}$  (where A is an invertible matrix) is  $A^{-H}\mathbf{w}$ , (where we use the relatively common notation  $A^{-H} = (A^{-1})^H$ ).
- (c) Explain how to find the (FIR) Wiener filter when  $R_x$  is rank-deficient. Discuss existence and uniqueness. *Hint:* Use Part (b) to transform your data to a more convenient basis.

## Problem 5: Fisher Information and Divergence

Suppose we are given a family of probability distributions  $\{p(\cdot;\theta):\theta\in\mathbb{R}\}$  on a set  $\mathcal{X}$ , parametrized by a real valued parameter  $\theta$ . (Equivalently, a random variable X whose distribution depends on  $\theta$ .) Assume that the parametrization is smooth, in the sense that

$$p'(x;\theta) := \frac{\partial}{\partial \theta} p(x;\theta)$$
 and  $p''(x;\theta) := \frac{\partial^2}{\partial \theta^2} p(x;\theta)$ 

exist. (Note that the derivatives are with respect to the parameter  $\theta$ , not with respect to x.) We will use the notation  $\mathbb{E}_{\theta_0}[\cdot]$  to denote expectations when the parameter is equal to a particular value  $\theta_0$ , i.e.,  $\mathbb{E}_{\theta}[g(X)] = \sum_x p(x;\theta)g(x)$ .

Define the function  $K(\theta, \theta') := D(p(\cdot; \theta) || p(\cdot; \theta'))$ .

(a) Show that for any 
$$\theta_0$$
,  $\frac{\partial}{\partial \theta} K(\theta, \theta_0) = \sum_x p'(x; \theta) \log \frac{p(x; \theta)}{p(x; \theta_0)}$ .

(b) Show that 
$$\frac{\partial^2}{\partial \theta^2} K(\theta, \theta_0) = \sum_x p''(x; \theta) \log \frac{p(x; \theta)}{p(x; \theta_0)} + J(X; \theta)$$
 with

$$J(X;\theta) := \mathbb{E}_{\theta} [(p'(X;\theta)/p(X;\theta))^2].$$

(c) Show that when  $\theta$  is close to  $\theta_0$ 

$$K(\theta, \theta_0) = \frac{1}{2}J(X; \theta_0)(\theta - \theta_0)^2 + o((\theta - \theta_0)^2)$$

(d) Show that  $J(X;\theta) = -\mathbb{E}_{\theta}\left[\frac{\partial^2}{\partial \theta^2}\log p(X;\theta)\right]$ .