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1 Problem for Class

Problem 1: Tweedie’s Formula

For the special case where X = D + N, where N is Gaussian noise of mean zero and variance σ2,
Tweedie’s formula says that the conditional mean (that is, the MMSE estimator) can be expressed as

E [D|X = x] = x+ σ2ℓ′(x), (1)

where

ℓ′(x) =
d

dx
log fX(x), (2)

where fX(x) denotes the marginal PDF of X. In this exercise, we derive this formula.

(a) Assume that fX|D(x|d) = eαdx−ψ(d)f0(x) for some functions ψ(d) and f0(x) and some constant α
(such that fX|D(x|d) is a valid PDF for every value of d ). Define

λ(x) = log
fX(x)

f0(x)
, (3)

where fX(x) is the marginal PDF of X, i.e., fX(x) =
∫
fX|D(x|δ)fD(δ)dδ. With this, establish that

E [D|X = x] =
1

α

d

dx
λ(x). (4)

(b) Show that the case where X = D+N, where N is Gaussian noise of mean zero and variance σ2, is
indeed of the form required in Part (a) by finding the corresponding ψ(d), f0(x), and α. Show that in
this case, we have

f ′0(x)

f0(x)
= − x

σ2
, (5)

and use this fact in combination with Part (a) to establish Tweedie’s formula.

2 The Homework

Problem 2: Bernoulli Data with Beta Prior

Let S ∈ [0, 1] be distributed with a Beta distribution with parameters (1/2, 1/2), which, as we have seen

in class, is p(s) = 1
π s

− 1
2 (1 − s)−

1
2 . We make n observations X1, X2, . . . , Xn that are (conditionally)

independent Bernoulli (S) random variables.
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a) Calculate the conditional distribution p(s|x1, x2, . . . , xn). Express it in terms of the integer t, which
is the number of ’1’s in the sample (x1, x2, . . . , xn).

Hint: For a, b ∈ R+, we have
∫ 1

0
ya−1(1− y)b−1dy = Γ(a)Γ(b)

Γ(a+b) , where Γ(·) denotes the Gamma function.

b) We would like to estimate S from X1, X2, . . . , Xn such as to minimize the mean-squared error
E[(S − Ŝ(X1, X2, . . . , Xn)

2]. Find the optimum estimate Ŝ(X1, X2, . . . , Xn). Simplify your result as
much as possible.

Hint: The Gamma function satisfies the property, for c ∈ R+, that Γ(c+ 1) = cΓ(c).

3 Additional Problems

Problem 3: Parameter Estimation and Fisher Information

Find the Fisher information for the following families:

(a) fθ(x) = N(0, θ) = 1√
2πθ

e−
x2

2θ

(b) fθ(x) = θe−θx, x ≥ 0

(c) What is the Cramèr Rao lower bound on Eθ(θ̂(X)− θ)2, where θ̂(X) is an unbiased estimator of
θ for (a) and (b)?

Problem 4: Wiener Filter and Irrelevant Data

As we have seen in class, the (FIR) Wiener filter is given by

w = R−1
x rdx, (6)

where Rx is the autocorrelation matrix of the data that’s being used, and rdx is the cross-correlation
between the data and the desired output. For this to be well defined, Rx should be full rank. In this
problem, we study this question in more detail.

(a) In many applications, the signal acquisition process is noisy. That is, the data x[n] = s[n] + w[n],
where s[n] is an arbitrary signal, and w[n] is white noise. Prove that in this case, the p−dimensional
autocorrelation matrix Rx is full rank (i.e., invertible) for any p. (Note: Be careful not to make any
assumptions about the signal s[n]. )

(b) In some other cases, Rx could be rank-deficient. To study this, prove first that if the (FIR) Wiener
filter based on the data x = {x[n]}p−1

n=0 is w, then the (FIR) Wiener filter based on the modified
data Ax (where A is an invertible matrix) is A−Hw, (where we use the relatively common notation
A−H = (A−1)H ).

(c) Explain how to find the (FIR) Wiener filter when Rx is rank-deficient. Discuss existence and unique-
ness. Hint: Use Part (b) to transform your data to a more convenient basis.

Problem 5: Fisher Information and Divergence

Suppose we are given a family of probability distributions {p( · ; θ) : θ ∈ R} on a set X , parametrized
by a real valued parameter θ . (Equivalently, a random variable X whose distribution depends on θ .)
Assume that the parametrization is smooth, in the sense that

p′(x; θ) :=
∂

∂θ
p(x; θ) and p′′(x; θ) :=

∂2

∂θ2
p(x; θ)
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exist. (Note that the derivatives are with respect to the parameter θ , not with respect to x .) We will
use the notation Eθ0 [·] to denote expectations when the parameter is equal to a particular value θ0 , i.e.,
Eθ[g(X)] =

∑
x p(x; θ)g(x) .

Define the function K(θ, θ′) := D
(
p( · ; θ)∥p( · ; θ′)

)
.

(a) Show that for any θ0 ,
∂

∂θ
K(θ, θ0) =

∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
.

(b) Show that
∂2

∂θ2
K(θ, θ0) =

∑
x

p′′(x; θ) log
p(x; θ)

p(x; θ0)
+ J(X; θ) with

J(X; θ) := Eθ
[(
p′(X; θ)/p(X; θ)

)2]
.

(c) Show that when θ is close to θ0

K(θ, θ0) =
1
2J(X; θ0)(θ − θ0)

2 + o((θ − θ0)
2)

(d) Show that J(X; θ) = −Eθ
[
∂2

∂θ2 log p(X; θ)
]
.
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