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Exercise Sheet 5 — Solutions

Exercise 1:

(a) Let f: X — S be a map from a topological space X to a set S. Show that if X is
connected and if f is locally constant, i.e., for every x € X there exists a neighborhood
U of z in X such that f|y: U — S is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.|

(b) Let M and N be smooth manifolds and let F': M — N be a smooth map. Assume
that M is connected. Show that dFy,: T,M — TrN is the zero map for each p € M
if and only if F' is constant.

[Hint: Use part (a). You may also use (without proof) the fact that any topological
manifold is locally (path) connected.]

Solution:

(a) We endow S with the discrete topology, and we claim that f: X — S is continuous.
Since then the singletons in S are open, to prove the claim, it suffices to show that
the fibers of f are open subsets of X. Fix s € S and pick x € f~!(s). Since f is locally
constant, there exists an open neighborhood U of x in X such that f|y: U — S is constant,
so for every u € U we have f(u) = f(z) = s, and hence u € f~!(s). Therefore, the open
neighborhood U of z is contained in the fiber f~!(s); in other words, x € U C f~1(s).
Since z € f~!(s) was arbitrary, f~'(s) is an open subset of X, and since s € S was
arbitrary, we conclude that f is continuous.

Since S is endowed with the discrete topology, every singleton in S is also closed, and
thus every fiber of f is also closed, since f is continuous. In other words, the fibers of f
are both closed and open subsets of X, which is a connected space by assumption, and
hence each one of them is either empty or the whole space X. It follows that f is constant.

(b) Assume first that F' is constant and let p € M. For every v € T,M and every
f € C*(N) we have dF,(v)(f) = v(f o F) = 0 by Lemma 3.5(a), since the composite
map f o F': M — R is constant. In conclusion, dF}, is the zero linear transformation for
every p € M.



Assume now that dF, is the zero map for each p € M. By assumption and by (a),

to prove that F' is constant, it suffices to show that F' is locally constant. Fix p € M.

Since F' is smooth, there are smooth charts (U, ) for M containing p and (V,4) for

N containing F(p) such that F(U) C V and the composite map F = ) o F o ¢! is

smooth. By shrinking U if necessary, we may assume that U is connected, and thus ¢(U)

is also connected. Now, for each ¢ € U we know that the differential dF is represented

in coordinate bases by the Jacobian matrix of F. Since dFy, = O for every ¢ € U by
assumption, we infer that

OF7 . . . .

e (q) =0 for every i, every j, and every §=¢(q) € ¢(U).

Therefore, F' is constant on ¢(U), and hence F' = po F o1t is constant on U. Since
p € M was arbitrary, we conclude that F'is locally constant, as desired.

Exercise 2: Prove the following assertions:
(a) The quotient map m: R"™!\ {0} — RP" is smooth.

(b) A map F': RP" — M to a smooth manifold M is smooth if and only if the composite
map F om: R"™™\ {0} — M is smooth.

(¢) For any point p € R"*'\ {0}, the differential dm,: T,(R™™ \ {0}) — T}, RP" is
surjective (i.e., m: R"™\ {0} — RP" is a smooth submersion) and its kernel is the
subspace generated by p.

Solution:

(a) Note that the coordinate representation of m with respect to the smooth charts
(71 (U;),1d) for R™™1\ {0} and (U;, ¢;) for RP" is

~. n+1 n
T RQE#O — R

(ZL'(), R ,[L’n) — ;(Zlf[), B 7 T (O 7T I ,[L’n).
7

Since this map is clearly smooth and since the charts (77(U;),1d) cover R™™\ {0}, we

conclude that 7 is smooth.

(b) Let F': RP" — M be a map such that F'or: R**\ {0} — M is smooth. Consider
the map

. n+1

1
— —.
o] = a
Note that ®; is well-defined. Furthermore, it is smooth, as its coordinate representation
with respect to the global charts (U, ¢;) and (R;L:;lo, Id) is given by the map
R" — R;L:;jo
(Z‘l,. .. ,.f(,’n) — (I‘l, o, Iy, 17$i+17 R ,Z‘n).



Finally, notice that m o ®; = Idy,, hence ®; is a smooth section of m. Now it is straight-
forward to conclude: to show that F' is smooth, it suffices to show that F|y, is smooth
for all 7. But then, as (¥ o 7)|z-1(y,) is smooth, we deduce that

k3

(Fom)|riw,yo® =F

U;

is smooth as well.
The converse direction follows directly from the fact that a composition of smooth
maps is smooth; see Proposition 2.11(d).

(c) From the solution to part (b), we know that for every 0 < i < n there exists a smooth
map ®;: U; — R\ {0} such that 7 o ®; = 1, where (y, is the inclusion of U; into
RP". Write p = (p*,...,p"™), and for each 0 < i < n set ®; = p’ - ®;. Then we still have
Tod; = ty,, and moreover @([p]) = p. Hence,

dmy o d(®;)p) = d(w,) ),

and as the right hand side is an isomorphism, we infer that dm, is surjective. Therefore,
7 is a smooth submersion.

Let us show that p € ker (dm,). Let f € C*(RP") be arbitrary, and let Dp|p be the
directional derivative at p with direction p defined in [Ezercise Sheet 4, Exercise 2]. Then

iry (Dy],) ()= Dy, (Fom) = & (fem)pip =0

as t — m(p + tp) is constant. By [Ezercise Sheet 4, Exercise 2], Dp|p corresponds to

p under the natural identification T,(R"*!\ {0}) = R"*'. Thus, the kernel of dr, is
generated by p.

Exercise 3:
(a) Prove the following assertions:

(i) A composition of smooth submersions is a smooth submersion.
(ii) A composition of smooth immersions is a smooth immersion.
(iii) A composition of smooth embeddings is a smooth embedding.

(b) Show by means of a counterexample that a composition of smooth maps of constant
rank need not have constant rank.

(c¢) Let M and N be smooth manifolds and let F': M — N be a map. Prove the following
assertions:

(i) F is a local diffeomorphism if and only if it is both a smooth immersion and a
smooth submersion.

(i) If dim M = dim N and if F is either a smooth immersion or a smooth submer-
sion, then it is a local diffeomorphism.



Solution:

(a) First, we show (i). Let F': M — N and G: N — P be smooth submersions and fix
p € M. The composite map G o F': M — P is smooth by Proposition 2.11(d), and its
differential at p is the linear map

d(G o F)p = dGF(p) ¢} det TpM — T(GoF)(p)P
by Proposition 3.7(b), which is surjective, since both linear maps
de: TpM — TF(p)N and dGF(p): Tp(p) — T(GOF)(p)

are surjective by assumption. Since p € M was arbitrary, we conclude that G o F' is a
smooth submersion.

Next, to prove (ii), we argue exactly as in (i), except that the word “surjective” is
replaced by the word “injective”.

Finally, we show (iii). Let F: M — N and G: N — P be smooth embeddings.
By (ii) we know that the composite map G o F': M — P is a smooth immersion, so it
remains to show that G o I is a homeomorphism onto its image (G o F)(M) C P in
the subspace topology. To this end, note that F' is a homeomorphism onto its image
F(M) C N in the subspace topology, and that G is a homeomorphism onto its image
G(N) C P in the subspace topology, so the restriction G|pary: F(M) — G(F(M)) is
also a homeomorphism. Therefore, the composite map G o F' is a homeomorphism onto
its image (G o F')(M) C P in the subspace topology, as required. In conclusion, G o F' is
a smooth embedding.

(b) Consider the maps
v: (0,27) — R?, ¢+ (cost,sint)

and
m:R* 5 R, (2,9) —vy.
Observe first that
V() =v(ta) = t1 =1
and
17 (@)l = |(—sint,cost)|| =1 for all t € (0,27),

so v is an injective smooth immersion; see Ezample 4.4 (1). Moreover, 7 is a surjective
smooth submersion by Ezercise 4(a). Hence, both v and 7 are smooth maps of constant
rank. However, the composite map

mo~y:(0,2r) - R, t > sint
does not have constant rank, because its derivative

(mrox):(0,27r) > R, ¢t — —cost

vanishes for ¢ = % and t = 37”

(c) Recall that a local diffeomorphism is a smooth map by Proposition 2.9(a).



(c)(i) Assume first that F is a local diffeomorphism. According to Proposition 3.6(d), for
any p € M, the differential of F' at p is an R-linear isomorphism, and thus both injective
and surjective. Hence, F' is both a smooth immersion and a smooth submersion.
Assume now that F'is both a smooth immersion and a smooth submersion. Then for
every p € M, its differential dF), is both injective and surjective, and thus an R-linear
isomorphism. It follows from Theorem 4.8 that F'is a local diffeomorphism.

(c)(ii) Since dim M = dim N, for any p € M, the differential dF},: T,M — Tp@)N is an
R-linear map between R-vector spaces of the same dimension. Thus, dF}, is injective or
surjective if and only if it an isomorphism. Therefore, F' is a smooth immersion if and
only if F' is a smooth submersion, and hence (ii) follows immediately from (i).

Exercise 4 (to be submitted):

(a) Let My,..., M} be smooth manifolds, where k£ > 2. Show that each of the projection
maps
T - M1 X ... XMk—>M1

is a smooth submersion.

(b) Let M, ..., My be smooth manifolds, where k& > 2. Choosing arbitrarily points
p1 € My, ..., pr € My, for each 1 < j < k consider the map

Lt Mj — Ml X ... X Mk, T — (pl,..., j_1,$,pj+1,...,pk).
Show that each ¢; is a smooth embedding.
(c) Show that the inclusion map ¢: S* < R"*! is a smooth embedding, where n > 1.

(d) Show that the map
G:R* > R®, (u,v) = ((2+ cos2mu) cos 2mv, (2 + cos 27u) sin 27rv, sin 2mu)
is a smooth immersion.

Solution:

(a) Fix i € {1,...,k} and p = (p1,...,pk) € My X ... X M. By part (a) of [Ezercise
Sheet 3, Ezercise 4] we know that m;: My X ... x My — M; is a smooth map, while by
[Ezercise Sheet 4, Ezercise 3] we know that

Ty(My X ... X M) — Ty, My & ... @ T, M;® ... T, My
v (d(ﬁl)p(v), cd(m)p(v), - ,d(wk)p(v))
is an R-linear isomorphism. Using the above identification, we infer that the differential

of m; at p,
d(mi)p: TpyMi® ... 0T, M; & ... 8T, M, — T, M,

is surjective. Since p € M; X ... X M, was arbitrary, we conclude that 7; is a smooth
submersion.



(b) Fix ] € {1, ey k} and pOthS p1 € Ml, Y | S Mj—l;pj—i—l € Mj+17 ..., D € Mk
We have already seen in the solution of [Erercise Sheet 4, Exercise 3] that the map

Lj: M]—>M1 X oo, XMk, Xz +— (pla-'-7pj717x7pj+17'--7pk>

is smooth, and it is also clear that ¢; is a homeomorphism onto its image
vi(My) = {pr} < - X {pja} X My X {pja} X - X {pe}
Moreover, given a point p; € M;, using the identification
Ty(My x ... x My) 2T, My @ ... ® Ty M; @ ... ® T, My,

where p == (p1,...,Pj—1,P5, Pjt+1,-- -+ Dk) € My x ... My, we infer that the differential of
tj at p,
d(Lj)pj : ijMj — Tlel D...D Tp].Mj D...D TpkMkza

is injective. In conclusion, ¢; is a smooth embedding.

(¢) Consider the graph coordinates (U;" NS", ;") for S"; see Ezample 1.10(2). We have
shown in Ezample 2.12 that the inclusion map ¢: S* — R"*! is smooth, because its
coordinate representation with respect to any of the graph coordinates is

Wt ... u") = (ul, R T V4 B [ T1 R VA ,u") ,

which is smooth on its domain, the unit ball B" = {u = (u',...,u") € R" | |u| < 1}.
The Jacobian matrix of the coordinate representation 7= ¢ o (¢")~" of ¢+ with respect to
the graph coordinates has the form

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
:Fu1 :Fu2 ZFui71 :FuL :Fu'i+1 :Fu”fl ZFu"
Vil /1= lul? Viclul? il /1 fu? Vi-lul? o \/1-]lu)?
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

In particular, we observe that each of these (n + 1) x n matrices (which represent the
differential of ¢ in coordinate bases) has rank n. Hence, ¢ is an injective smooth immersion.
Since S™ is compact, by Proposition 4.6(c) we conclude that ¢ is a smooth embedding.



(d) The map G with component functions (G, G?, G?) is clearly smooth with Jacobian
matrix

1 1

& (u,v) %(u,v)

JG(u7U> = %(U’v U) Bgf (U7U>
3 3

B (u,v) % (u,v)

—2 sin(2mu) cos(2mv)  —2m (2 + cos(2mu)) sin(27v)
= | —27sin(27ru)sin(27v) 27 (2 + cos(2muw)) cos(2mv)

27 cos(2mu) 0

The 2 x 2 submatrix

(83_(5(“,@) %(%v)) _ (—27rsin(27ru) cos(2mv) —27r(2+cos(27ru)) sin(27rv))

9G2 (y, v)  9G2 (y, v) —27 sin(27u) sin(2mv) 27 (2 + cos(2mu)) cos(27v)

ou ov

of Jg has determinant
Dis(u,v) = —47%(2 + cos(2mu)) sin(27u),
the 2 x 2 submatrix

(83_65(“,@) 88—Cf(uw)> _ (—2751n(277u) cos(2mv)  —2m (2 + cos(27u)) sin(27rv)>

‘9—G3(u7 v) 6—(;3(% v) 27 cos(2mu) 0

ou ov

of Jg has determinant
Dis(u,v) = 47%(2 + cos(27u)) cos(27u) sin(27v),

and the 2 x 2 submatrix

(%—%,w —<u>)

3 3
G (uv) - (u,0)

ou

—27 sin(27u) sin(2mv) 27 (2 + cos(2mu)) cos(2mv)
27 cos(2mu) 0

ov

of Jg has determinant
Dos(u,v) = —47%(2 4 cos(2mu)) cos(2mu) cos(27v).

Observe now that for each (u,v) € R?, at least one of the determinants D1a(u,v), Di3(u,v)
and Doz(u, v) is non-zero, since cos(276) and sin(276) do not vanish simultaneously. This
implies' that rk (J(u,v)) = 2 for all (u,v) € R?. In conclusion, G is a smooth immersion,
as claimed.

1By linear algebra we know that an (m x n)-matrix with m < n has full rank if and only if it has an
invertible (m x m)-submatrix.



Exercise 5: Consider the map
F:R — R? t+ (2+tanht) - (cost, sint).
(a) Show that F'is an injective smooth immersion.

(b) Show that F'is a smooth embedding.
[Hint: Show that F: R — U = {x € R? | 1 < ||z|| < 3} is a proper map.|
Solution:

(a) Clearly, F' is smooth. Recall also that the function
teR— ||F(t)|| =2+ tanht

is strictly increasing, which implies that F'is injective. Finally, to show that F'is a smooth
immersion, it suffices to show that F'(t) # 0 for every ¢ € R. To this end, recall that

d 1
—tanht = ———, t € R,
dt cosh”t

so we have

1 1
F'(t) = (—(2 + tanh t)sint + 5—cost, (24 tanht)cost + ———sin t) , teR,
cosh”t cosh”t

and thus

1
|E'(t)||* = (2 + tanh t)* + T 0 forallt €R,

which implies that F(t) # 0 for every ¢t € R, as desired.
(b) Consider the open annulus
U={zeR|1<|z|| <3} CR?

and note that F(t) € U for every t € R. (Incidentally, the image of F|[_4r 4] has been
plotted below.)

R\




Thus, F' may be viewed as an injective smooth immersion F': R — U. Since the inclusion
map ¢: U < R? is a smooth embedding by Ezample 4.4(3), in view of Ezercise 2(a)(iii)
and Proposition 4.6(b), to prove (b), it suffices to show that F': R — U is a proper map;
in other words, given a compact subset K of U, we have to show that F~!(K) is a compact
subset of R, or equivalently that it is closed and bounded. Since K C U is compact and
U C R? is Hausdorff, K is a closed subset of U, and since F is continuous, F~!(K) is
a closed subset of R. Now, denote by m (resp. M) the minimum (resp. the maximum)
norm of the points of K, and observe that [m, M| C (1,3). Denote also by ¢ (resp. L) the
preimage of m (resp. M) under the strictly increasing function

g: R— (1,3), t— ||F(t)|| =2+ tanht

and note that F~(K) C [¢, L], which shows that F~!(K) is a bounded subset of R. This
finishes the proof of (b).



