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Exercise Sheet 5 – Solutions

Exercise 1:

(a) Let f : X → S be a map from a topological space X to a set S. Show that if X is
connected and if f is locally constant, i.e., for every x ∈ X there exists a neighborhood
U of x in X such that f |U : U → S is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.]

(b) Let M and N be smooth manifolds and let F : M → N be a smooth map. Assume
that M is connected. Show that dFp : TpM → TF (p)N is the zero map for each p ∈M
if and only if F is constant.

[Hint: Use part (a). You may also use (without proof) the fact that any topological
manifold is locally (path) connected.]

Solution:

(a) We endow S with the discrete topology, and we claim that f : X → S is continuous.
Since then the singletons in S are open, to prove the claim, it suffices to show that
the fibers of f are open subsets of X. Fix s ∈ S and pick x ∈ f−1(s). Since f is locally
constant, there exists an open neighborhood U of x inX such that f |U : U → S is constant,
so for every u ∈ U we have f(u) = f(x) = s, and hence u ∈ f−1(s). Therefore, the open
neighborhood U of x is contained in the fiber f−1(s); in other words, x ∈ U ⊆ f−1(s).
Since x ∈ f−1(s) was arbitrary, f−1(s) is an open subset of X, and since s ∈ S was
arbitrary, we conclude that f is continuous.

Since S is endowed with the discrete topology, every singleton in S is also closed, and
thus every fiber of f is also closed, since f is continuous. In other words, the fibers of f
are both closed and open subsets of X, which is a connected space by assumption, and
hence each one of them is either empty or the whole space X. It follows that f is constant.

(b) Assume first that F is constant and let p ∈ M . For every v ∈ TpM and every
f ∈ C∞(N) we have dFp(v)(f) = v(f ◦ F ) = 0 by Lemma 3.5 (a), since the composite
map f ◦ F : M → R is constant. In conclusion, dFp is the zero linear transformation for
every p ∈M .
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Assume now that dFp is the zero map for each p ∈ M . By assumption and by (a),
to prove that F is constant, it suffices to show that F is locally constant. Fix p ∈ M .
Since F is smooth, there are smooth charts (U,φ) for M containing p and (V, ψ) for

N containing F (p) such that F (U) ⊆ V and the composite map F̂ = ψ ◦ F ◦ φ−1 is
smooth. By shrinking U if necessary, we may assume that U is connected, and thus φ(U)
is also connected. Now, for each q ∈ U we know that the differential dFq is represented

in coordinate bases by the Jacobian matrix of F̂ . Since dFq = O for every q ∈ U by
assumption, we infer that

∂F̂ j

∂xi
(
q̂
)
= 0 for every i, every j, and every q̂ = φ(q) ∈ φ(U).

Therefore, F̂ is constant on φ(U), and hence F = φ ◦ F̂ ◦ ψ−1 is constant on U . Since
p ∈M was arbitrary, we conclude that F is locally constant, as desired.

Exercise 2: Prove the following assertions:

(a) The quotient map π : Rn+1 \ {0} → RPn is smooth.

(b) A map F : RPn →M to a smooth manifold M is smooth if and only if the composite
map F ◦ π : Rn+1 \ {0} →M is smooth.

(c) For any point p ∈ Rn+1 \ {0}, the differential dπp : Tp
(
Rn+1 \ {0}

)
→ T[p]RPn is

surjective (i.e., π : Rn+1 \ {0} → RPn is a smooth submersion) and its kernel is the
subspace generated by p.

Solution:

(a) Note that the coordinate representation of π with respect to the smooth charts(
π−1(Ui), Id

)
for Rn+1 \ {0} and (Ui, φi) for RPn is

π̂ : Rn+1
xi ̸=0 → Rn

(x0, . . . , xn) 7→
1

xi
(x0, . . . , xi−1, xi+1, . . . , xn).

Since this map is clearly smooth and since the charts
(
π−1(Ui), Id

)
cover Rn+1 \ {0}, we

conclude that π is smooth.

(b) Let F : RPn → M be a map such that F ◦ π : Rn+1 \ {0} → M is smooth. Consider
the map

Φi : Ui → Rn+1
xi ̸=0

[x] 7→ 1

xi
x.

Note that Φi is well-defined. Furthermore, it is smooth, as its coordinate representation
with respect to the global charts (Ui, φi) and (Rn+1

xi ̸=0, Id) is given by the map

Rn → Rn+1
xi ̸=0

(x1, . . . , xn) 7→ (x1, . . . , xi, 1, xi+1, . . . , xn).

2



Finally, notice that π ◦ Φi = IdUi
, hence Φi is a smooth section of π. Now it is straight-

forward to conclude: to show that F is smooth, it suffices to show that F |Ui
is smooth

for all i. But then, as (F ◦ π)|π−1(Ui) is smooth, we deduce that

(F ◦ π)|π−1(Ui) ◦ Φi = F |Ui

is smooth as well.
The converse direction follows directly from the fact that a composition of smooth

maps is smooth; see Proposition 2.11 (d).

(c) From the solution to part (b), we know that for every 0 ≤ i ≤ n there exists a smooth
map Φi : Ui → Rn+1 \ {0} such that π ◦ Φi = ιUi

, where ιUi
is the inclusion of Ui into

RPn. Write p = (p1, . . . , pn+1), and for each 0 ≤ i ≤ n set Φ̃i = pi ·Φi. Then we still have

π ◦ Φ̃i = ιUi
, and moreover Φ̃i

(
[p]
)
= p. Hence,

dπp ◦ d(Φ̃i)[p] = d(ιUi
)[p],

and as the right hand side is an isomorphism, we infer that dπp is surjective. Therefore,
π is a smooth submersion.

Let us show that p ∈ ker
(
dπp
)
. Let f ∈ C∞(RPn) be arbitrary, and let Dp

∣∣
p
be the

directional derivative at p with direction p defined in [Exercise Sheet 4, Exercise 2]. Then

dπp

(
Dp

∣∣
p

)
(f) = Dp

∣∣
p
(f ◦ π) = d

dt

∣∣∣∣
t=0

(
f ◦ π

)
(p+ tp) = 0

as t 7→ π(p + tp) is constant. By [Exercise Sheet 4, Exercise 2], Dp

∣∣
p
corresponds to

p under the natural identification Tp
(
Rn+1 \ {0}

) ∼= Rn+1. Thus, the kernel of dπp is
generated by p.

Exercise 3:

(a) Prove the following assertions:

(i) A composition of smooth submersions is a smooth submersion.

(ii) A composition of smooth immersions is a smooth immersion.

(iii) A composition of smooth embeddings is a smooth embedding.

(b) Show by means of a counterexample that a composition of smooth maps of constant
rank need not have constant rank.

(c) LetM and N be smooth manifolds and let F : M → N be a map. Prove the following
assertions:

(i) F is a local diffeomorphism if and only if it is both a smooth immersion and a
smooth submersion.

(ii) If dimM = dimN and if F is either a smooth immersion or a smooth submer-
sion, then it is a local diffeomorphism.
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Solution:

(a) First, we show (i). Let F : M → N and G : N → P be smooth submersions and fix
p ∈ M . The composite map G ◦ F : M → P is smooth by Proposition 2.11 (d), and its
differential at p is the linear map

d(G ◦ F )p = dGF (p) ◦ dFp : TpM → T(G◦F )(p)P

by Proposition 3.7 (b), which is surjective, since both linear maps

dFp : TpM → TF (p)N and dGF (p) : TF (p) → T(G◦F )(p)

are surjective by assumption. Since p ∈ M was arbitrary, we conclude that G ◦ F is a
smooth submersion.

Next, to prove (ii), we argue exactly as in (i), except that the word “surjective” is
replaced by the word “injective”.

Finally, we show (iii). Let F : M → N and G : N → P be smooth embeddings.
By (ii) we know that the composite map G ◦ F : M → P is a smooth immersion, so it
remains to show that G ◦ F is a homeomorphism onto its image (G ◦ F )(M) ⊆ P in
the subspace topology. To this end, note that F is a homeomorphism onto its image
F (M) ⊆ N in the subspace topology, and that G is a homeomorphism onto its image
G(N) ⊆ P in the subspace topology, so the restriction G|F (M) : F (M) → G

(
F (M)

)
is

also a homeomorphism. Therefore, the composite map G ◦ F is a homeomorphism onto
its image (G ◦ F )(M) ⊆ P in the subspace topology, as required. In conclusion, G ◦ F is
a smooth embedding.

(b) Consider the maps
γ : (0, 2π) → R2, t 7→ (cos t, sin t)

and
π : R2 → R, (x, y) 7→ y.

Observe first that
γ(t1) = γ(t2) =⇒ t1 = t2

and
∥γ′(t)∥ = ∥(− sin t, cos t)∥ = 1 for all t ∈ (0, 2π),

so γ is an injective smooth immersion; see Example 4.4 (1). Moreover, π is a surjective
smooth submersion by Exercise 4(a). Hence, both γ and π are smooth maps of constant
rank. However, the composite map

π ◦ γ : (0, 2π) → R, t 7→ sin t

does not have constant rank, because its derivative

(π ◦ γ)′ : (0, 2π) → R, t 7→ − cos t

vanishes for t = π
2
and t = 3π

2
.

(c) Recall that a local diffeomorphism is a smooth map by Proposition 2.9 (a).
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(c)(i) Assume first that F is a local diffeomorphism. According to Proposition 3.6 (d), for
any p ∈M , the differential of F at p is an R-linear isomorphism, and thus both injective
and surjective. Hence, F is both a smooth immersion and a smooth submersion.

Assume now that F is both a smooth immersion and a smooth submersion. Then for
every p ∈ M , its differential dFp is both injective and surjective, and thus an R-linear
isomorphism. It follows from Theorem 4.8 that F is a local diffeomorphism.

(c)(ii) Since dimM = dimN , for any p ∈ M , the differential dFp : TpM → TF (p)N is an
R-linear map between R-vector spaces of the same dimension. Thus, dFp is injective or
surjective if and only if it an isomorphism. Therefore, F is a smooth immersion if and
only if F is a smooth submersion, and hence (ii) follows immediately from (i).

Exercise 4 (to be submitted):

(a) Let M1, . . . ,Mk be smooth manifolds, where k ≥ 2. Show that each of the projection
maps

πi : M1 × . . .×Mk →Mi

is a smooth submersion.

(b) Let M1, . . . ,Mk be smooth manifolds, where k ≥ 2. Choosing arbitrarily points
p1 ∈M1, . . . , pk ∈Mk, for each 1 ≤ j ≤ k consider the map

ιj : Mj →M1 × . . .×Mk, x 7→ (p1, . . . , pj−1, x, pj+1, . . . , pk).

Show that each ιj is a smooth embedding.

(c) Show that the inclusion map ι : Sn ↪→ Rn+1 is a smooth embedding, where n ≥ 1.

(d) Show that the map

G : R2 → R3, (u, v) 7→
(
(2 + cos 2πu) cos 2πv, (2 + cos 2πu) sin 2πv, sin 2πu

)
is a smooth immersion.

Solution:

(a) Fix i ∈ {1, . . . , k} and p = (p1, . . . , pk) ∈ M1 × . . . ×Mk. By part (a) of [Exercise
Sheet 3, Exercise 4] we know that πi : M1 × . . . ×Mk → Mi is a smooth map, while by
[Exercise Sheet 4, Exercise 3] we know that

Tp
(
M1 × . . .×Mk

)
−→ Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk

v 7→
(
d(π1)p(v), . . . , d(πi)p(v), . . . , d(πk)p(v)

)
is an R-linear isomorphism. Using the above identification, we infer that the differential
of πi at p,

d(πi)p : Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk → TpiMi,

is surjective. Since p ∈ M1 × . . . ×Mk was arbitrary, we conclude that πi is a smooth
submersion.

5



(b) Fix j ∈ {1, . . . , k} and points p1 ∈ M1, . . . , pj−1 ∈ Mj−1, pj+1 ∈ Mj+1, . . . , pk ∈ Mk.
We have already seen in the solution of [Exercise Sheet 4, Exercise 3] that the map

ιj : Mj →M1 × . . .×Mk, x 7→ (p1, . . . , pj−1, x, pj+1, . . . , pk)

is smooth, and it is also clear that ιj is a homeomorphism onto its image

ιj(Mj) = {p1} × · · · × {pj−1} ×Mj × {pj+1} × · · · × {pk}.

Moreover, given a point pj ∈Mj, using the identification

Tp
(
M1 × . . .×Mk

) ∼= Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk,

where p := (p1, . . . , pj−1, pj, pj+1, . . . , pk) ∈ M1 × . . .Mk, we infer that the differential of
ιj at p,

d(ιj)pj : TpjMj → Tp1M1 ⊕ . . .⊕ TpjMj ⊕ . . .⊕ TpkMk,

is injective. In conclusion, ιj is a smooth embedding.

(c) Consider the graph coordinates
(
U±
i ∩ Sn, φ±

i

)
for Sn; see Example 1.10 (2). We have

shown in Example 2.12 that the inclusion map ι : Sn ↪→ Rn+1 is smooth, because its
coordinate representation with respect to any of the graph coordinates is

ι̂(u1, . . . , un) =
(
u1, . . . , ui−1,±

√
1− ∥u∥2, ui, . . . , un

)
,

which is smooth on its domain, the unit ball Bn = {u = (u1, . . . , un) ∈ Rn | ∥u∥ < 1}.
The Jacobian matrix of the coordinate representation ι̂ = ι ◦ (φ±

i )
−1 of ι with respect to

the graph coordinates has the form

1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0

...
...

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0 0
∓u1√
1−∥u∥2

∓u2√
1−∥u∥2

. . . ∓ui−1√
1−∥u∥2

∓ui√
1−∥u∥2

∓ui+1√
1−∥u∥2

. . . ∓un−1√
1−∥u∥2

∓un√
1−∥u∥2

0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0

...
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 1



.

In particular, we observe that each of these (n + 1) × n matrices (which represent the
differential of ι in coordinate bases) has rank n. Hence, ι is an injective smooth immersion.
Since Sn is compact, by Proposition 4.6 (c) we conclude that ι is a smooth embedding.
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(d) The map G with component functions (G1, G2, G3) is clearly smooth with Jacobian
matrix

JG(u, v) =


∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)



=

−2π sin(2πu) cos(2πv) −2π
(
2 + cos(2πu)

)
sin(2πv)

−2π sin(2πu) sin(2πv) 2π
(
2 + cos(2πu)

)
cos(2πv)

2π cos(2πu) 0

 .

The 2× 2 submatrix(
∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

)
=

(
−2π sin(2πu) cos(2πv) −2π

(
2 + cos(2πu)

)
sin(2πv)

−2π sin(2πu) sin(2πv) 2π
(
2 + cos(2πu)

)
cos(2πv)

)

of JG has determinant

D12(u, v) := −4π2
(
2 + cos(2πu)

)
sin(2πu),

the 2× 2 submatrix(
∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)

)
=

(
−2π sin(2πu) cos(2πv) −2π

(
2 + cos(2πu)

)
sin(2πv)

2π cos(2πu) 0

)

of JG has determinant

D13(u, v) := 4π2
(
2 + cos(2πu)

)
cos(2πu) sin(2πv),

and the 2× 2 submatrix(
∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)

)
=

(
−2π sin(2πu) sin(2πv) 2π

(
2 + cos(2πu)

)
cos(2πv)

2π cos(2πu) 0

)

of JG has determinant

D23(u, v) := −4π2
(
2 + cos(2πu)

)
cos(2πu) cos(2πv).

Observe now that for each (u, v) ∈ R2, at least one of the determinantsD12(u, v), D13(u, v)
and D23(u, v) is non-zero, since cos(2πθ) and sin(2πθ) do not vanish simultaneously. This
implies1 that rk

(
JG(u, v)

)
= 2 for all (u, v) ∈ R2. In conclusion, G is a smooth immersion,

as claimed.

1By linear algebra we know that an (m× n)-matrix with m < n has full rank if and only if it has an
invertible (m×m)-submatrix.
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Exercise 5: Consider the map

F : R → R2, t 7→ (2 + tanh t) · (cos t, sin t).

(a) Show that F is an injective smooth immersion.

(b) Show that F is a smooth embedding.

[Hint: Show that F : R → U = {x ∈ R2 | 1 < ∥x∥ < 3} is a proper map.]

Solution:

(a) Clearly, F is smooth. Recall also that the function

t ∈ R 7→ ∥F (t)∥ = 2 + tanh t

is strictly increasing, which implies that F is injective. Finally, to show that F is a smooth
immersion, it suffices to show that F ′(t) ̸= 0 for every t ∈ R. To this end, recall that

d

dt
tanh t =

1

cosh2 t
, t ∈ R,

so we have

F ′(t) =

(
−(2 + tanh t) sin t+

1

cosh2 t
cos t, (2 + tanh t) cos t+

1

cosh2 t
sin t

)
, t ∈ R,

and thus

∥F ′(t)∥2 = (2 + tanh t)2 +
1

cosh4 t
> 0 for all t ∈ R,

which implies that F ′(t) ̸= 0 for every t ∈ R, as desired.
(b) Consider the open annulus

U :=
{
x ∈ R2 | 1 < ∥x∥ < 3

}
⊆ R2

and note that F (t) ∈ U for every t ∈ R. (Incidentally, the image of F |[−4π,4π] has been
plotted below.)
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Thus, F may be viewed as an injective smooth immersion F : R → U . Since the inclusion
map ι : U ↪→ R2 is a smooth embedding by Example 4.4 (3), in view of Exercise 2(a)(iii)
and Proposition 4.6 (b), to prove (b), it suffices to show that F : R → U is a proper map;
in other words, given a compact subsetK of U , we have to show that F−1(K) is a compact
subset of R, or equivalently that it is closed and bounded. Since K ⊆ U is compact and
U ⊆ R2 is Hausdorff, K is a closed subset of U , and since F is continuous, F−1(K) is
a closed subset of R. Now, denote by m (resp. M) the minimum (resp. the maximum)
norm of the points of K, and observe that [m,M ] ⊆ (1, 3). Denote also by ℓ (resp. L) the
preimage of m (resp. M) under the strictly increasing function

g : R → (1, 3), t 7→ ∥F (t)∥ = 2 + tanh t

and note that F−1(K) ⊆ [ℓ, L], which shows that F−1(K) is a bounded subset of R. This
finishes the proof of (b).
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