

Differential Geometry II - Smooth Manifolds Winter Term 2025/2026 Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

Exercise Sheet 5

Exercise 1:

(a) Let $f: X \to S$ be a map from a topological space X to a set S. Show that if X is connected and if f is *locally constant*, i.e., for every $x \in X$ there exists a neighborhood U of x in X such that $f|_{U}: U \to S$ is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.]

(b) Let M and N be smooth manifolds and let $F: M \to N$ be a smooth map. Assume that M is connected. Show that $dF_p: T_pM \to T_{F(p)}N$ is the zero map for each $p \in M$ if and only if F is constant.

[Hint: Use part (a). You may also use (without proof) the fact that any topological manifold is locally (path) connected.]

Exercise 2:

Prove the following assertions:

- (a) The quotient map $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is smooth.
- (b) A map $F: \mathbb{RP}^n \to M$ to a smooth manifold M is smooth if and only if the composite map $F \circ \pi: \mathbb{R}^{n+1} \setminus \{0\} \to M$ is smooth.
- (c) For any point $p \in \mathbb{R}^{n+1} \setminus \{0\}$, the differential $d\pi_p : T_p(\mathbb{R}^{n+1} \setminus \{0\}) \to T_{[p]}\mathbb{RP}^n$ is surjective (i.e., $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is a smooth submersion) and its kernel is the subspace generated by p.

Exercise 3:

- (a) Prove the following assertions:
 - (i) A composition of smooth submersions is a smooth submersion.
 - (ii) A composition of smooth immersions is a smooth immersion.
 - (iii) A composition of smooth embeddings is a smooth embedding.

- (b) Show by means of a counterexample that a composition of smooth maps of constant rank need not have constant rank.
- (c) Let M and N be smooth manifolds and let $F \colon M \to N$ be a map. Prove the following assertions:
 - (i) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth submersion.
 - (ii) If $\dim M = \dim N$ and if F is either a smooth immersion or a smooth submersion, then it is a local diffeomorphism.

Exercise 4 (to be submitted by Thursday, 16.10.2025, 16:00):

(a) Let M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$. Show that each of the projection maps

$$\pi_i \colon M_1 \times \ldots \times M_k \to M_i$$

is a smooth submersion.

(b) Let M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$. Choosing arbitrarily points $p_1 \in M_1, \ldots, p_k \in M_k$, for each $1 \leq j \leq k$ consider the map

$$\iota_i \colon M_i \to M_1 \times \ldots \times M_k, \ x \mapsto (p_1, \ldots, p_{i-1}, x, p_{i+1}, \ldots, p_k).$$

Show that each ι_i is a smooth embedding.

- (c) Show that the inclusion map $\iota \colon \mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$ is a smooth embedding, where $n \geq 1$.
- (d) Show that the map

$$G: \mathbb{R}^2 \to \mathbb{R}^3, \ (u, v) \mapsto \left((2 + \cos 2\pi u) \cos 2\pi v, \ (2 + \cos 2\pi u) \sin 2\pi v, \sin 2\pi u \right)$$

is a smooth immersion.

Exercise 5:

Consider the map

$$F: \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (2 + \tanh t) \cdot (\cos t, \sin t).$$

2

- (a) Show that F is an injective smooth immersion.
- (b) Show that F is a smooth embedding.

[Hint: Show that $F: \mathbb{R} \to U = \{x \in \mathbb{R}^2 \mid 1 < ||x|| < 3\}$ is a proper map.]