
I. Continuité

Nous revenons à l’étude générale des fonctions réelles avec la notion de continuité. Comment dire

en termes mathématiques que l’on peut “dessiner le graphe d’une fonction sans lever le crayon” ?

Nous verrons une définition faisant intervenir des ω et des ε, puis nous analyserons le cas des

fonctions connues : polynomiales, rationnelles, trigonométriques, exponentielles et logarithmes.

1 Rappels

Pour définir la limite d’une suite de nombres réels (xn), vous avez dû modéliser la notion

d’arbitrairement proche en introduisant un nombre ϑ réel et positif. Un nombre x est alors la limite

de la suite si pour tout ϑ > 0, il existe un nombre entier N tel que |x→ xn| < ϑ pour tout n ↑ N .

En d’autres termes, la di!érence entre les termes de la suite et la limite s’amenuise à mesure que

l’on avance dans la suite.

Exemple 1.1. Calculons la limite de la suite xn =
cos

(
3
↓
n+ 1

)

4
↓
n3 + 1

.

Avant de commencer à faire des calculs, remarquons que cette expression est définie ↔n ↗ N.

D’autre part, le cosinus d’un nombre réel est toujours compris entre →1 et 1, si bien que

|xn| ↘
1

4
↓
n3 + 1

.

Cette fraction tend vers lorsque n tend vers l’infini. Formalisons-le avec des epsilons.

Soit ϑ > 0. On veut n tel que

En posant N =
⌊

3
↓
ϑ→4 → 1 + 1

⌋
, on a bien ↔n ↑ N
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Vous avez développé des méthodes qui permettent d’éviter l’usage de la définition et nous les

rencontrerons à nouveau dans ce chapitre.

2 Fonctions continues

Nous étudions le graphe d’une fonction réelle f : D ≃ R avec D inclus dans R et nous nous

trouvons par conséquent dans le plan R2
. Pour approcher un point du plan, il faut modéliser la

notion d’arbitrairement proche à l’aide de deux nombres ϑ et ε, arbitrairement petits, qui décrivent

ce qui se passe sur chacun des deux axes.

Définition 2.1.
Une fonction réelle f est continue en un point a de son domaine de définition si lim

x↑a
f(x) = f(a).

Si f n’est pas continue en a, on dit qu’elle est discontinue en ce point.

On dit que f est continue si elle est continue en tout point de son domaine de définition.

Remarque 2.2. La définition de la limite d’une fonction permet de traduire cette définition de

la façon suivante : f est continue au point a s’il existe un intervalle ]a→ u, a+ u[ sur lequel f est

définie et que, pour tout ϑ > 0, il existe u ↑ ε > 0 tel que

0 < |x→ a| < ε =⇐ |f(x)→ f(a)| < ϑ

En d’autres termes, les valeurs f(x) sont aussi proches qu’on veut de f(a) si x est su"samment

proche de a.

Exemple 2.3. Considérons la fonction f(x) = |x|. Est-elle continue en zéro ?

Remarquons d’abord que ED(f) = R, si bien que le nombre u ci-dessus n’a pas d’importance.

La valeur de la fonction en 0 est 0, si bien que

nous devons montrer que |x| s’approche de zéro

à mesure que x s’approche de zéro.

C’est bien le cas et nous le formalisons avec des

ϑ et des ε.

Pour tout ϑ > 0, choisissons εω =

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0
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Exemple 2.4. Nous montrerons que les fonctions réelles de type

sont continues sur leur domaine de définition.

La fonction sign : R ≃ R est

La fonction sign : R↓ ≃ R est

f : R ≃ R

x ⇒≃
{

1 si x ⇑= 2

0 sinon

Remarque 2.5. Nous avons vu que la définition de limite d’une fonction peut s’exprimer en

termes de suites. Par conséquent, une fonction f est continue en a si et seulement si l’image par f

de toute suite qui converge vers a est une suite qui converge vers f(a).

Plutôt qu’un critère qui permet de démontrer qu’une fonction est continue, cette caractérisation

permet parfois de montrer qu’une fonction est discontinue en un point.

Exemple 2.6. Considérons la célèbre fonction de Dirichlet définie comme suit :

f : R ≃ R

x ⇒≃
{

1 si x ↗ Q
0 si x ↗ R\Q

Les résultats que nous connaissons sur les limites de fonctions nous donnent immédiatement

les résultats suivants sur la continuité

Proposition 2.7. Soient f et g deux fonctions réelles continues en a. Alors

1. La somme f + g est continue en a.

2. Pour tout ϖ ↗ R, le produit ϖ · f est continu en a.

3. Le produit f · g est continu en a.

4. Si g(a) ⇑= 0, le quotient f/g est continu en a.
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Exemple 2.8. Toute fonction polynomiale est continue. De même, toute fonction rationnelle est

continue sur son ensemble de définition. En e!et, la fonction identité est continue (voir exercices).

Par la propriété 3,

Par la propriété 2,

Par la propriété 1,

Par la propriété 4,

Proposition 2.9. Soient f une fonction réelle continue en a et g une fonction réelle continue en

f(a). On suppose que l’image de f est contenue dans D(g). Alors g ⇓ f est continue en a.

Démonstration. C’est à nouveau ce que nous savons sur les limites qui nous permet de conclure.

Comme lim
x↑a

g(f(x)) = g(f(a)), la composition g ⇓ f est continue en a.

Un concept important pour les fonctions est le prolongement par continuité.

Supposons que nous étudions une fonction définie en R \ {0}, par exemple f(x) =
x

x
.

Existe-t-il une autre fonction g définie sur tout R et continue, qui coïncide avec f sur D(f) ?

Dans ce cas la réponse est claire : on pose g(0) = puisque f(x) = 1 pour tout x ⇑= 0.

Mais il est souvent plus di"cile de savoir si l’on peut, ou non, prolonger une fonction par continuité.

Définition 2.10. Soit f une fonction définie au voisinage de a, mais qui n’est pas définie en a.

On suppose de plus que lim
x↑a

f(x) existe. Alors la fonction

g : D(f) ⇔ {a} ≃ R

x ⇒≃
{

f(x) si x ↗ D(f)

lim
x↑a

f(x) si x = a

est le prolongement par continuité de f en a.

Remarque 2.11.
Le prolongement par continuité de f en a est par construction une fonction continue en a.

Exemple 2.12. Considérons la fonction f(x) = x · cos
(
1

x

)
définie dans .
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3 Le Théorème de la valeur intermédiaire

Passons maintenant à l’étude du comportement des fonctions continues sur un intervalle fermé.

Définition 3.1. Une fonction réelle f : [a, b] ≃ R est continue sur [a, b] si elle est continue en tout

point de ]a, b[ et si elle est continue à droite en a et continue à gauche en b ; on demande donc

qu’aux bornes de l’intervalle, on ait lim
x↑a+

f(x) = f(a) et lim
x↑b→

f(x) = f(b).

Exemple 3.2. La fonction f(x) =
↓
1→ x est continue sur [0, 1]. En e!et, g(x) = 1→x est continue

sur R car c’est une fonction polynômiale. La fonction racine est définie et continue sur R↓
+.

Ainsi, f est une composition de fonctions continues qui est donc continue sur [0, 1[.

Il reste à regarder ce qui se passe en 1. Comme lim
x↑1→

↓
1→ x = 0 = f(1), c’est gagné !

Théorème 3.3 (de la valeur intermédiaire). Soit f une fonction continue sur l’intervalle [a, b]

avec f(a) < f(b). Si d est tel que f(a) < d < f(b), alors il existe c ↗ ]a, b[ tel que f(c) = d.

Un résultat similaire est obtenu si f(a) > f(b) : dans ce cas, si d est tel que f(a) > d > f(b), alors

il existe c ↗ ]a, b[ tel que f(c) = d.

Démonstration. Considérons le sous-ensemble

S = {x ↗ [a, b] | f(x) < d}

Cet ensemble est non vide, puisqu’il contient a, et est majoré par b. Comme R est complet, la borne

supérieure s de S existe. On sait aussi que s est le plus petit majorant de S. Comme f est continue

en s, on a lim
x↑s

f(x) = f(s). En particulier, pour toute suite (xn)n↔N dans S avec lim
n↑↗

xn = s, on a

lim
n↑↗

f(xn) = f(s) ; comme f(xn) < d est toujours vrai, on a f(s) ↘ d puisque d est un majorant

de l’ensemble {f(xn) | n ↗ N}. Considérons maintenant

T = {x ↗ [a, b] | x > s}

Les éléments de T ne sont donc pas contenus dans S, si bien que f(x) ↑ d pour tout x ↗ T . Donc

f(s) = lim
x↑s

f(x) = lim
x↑s+

f(x) ↑ d. Nous avons montré que f(s) ↘ d et f(s) ↑ d, donc f(s) = d.
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4 Fonctions réciproques, trigonométriques et exponentielles

Nous avons établi que les fonctions polynomiales et rationnelles sont continues sur leur ensemble

de définition. Nous allons voir maintenant que toutes les fonctions trigonométriques sont continues

et parlerons ensuite de la continuité des fonctions réciproques afin de traiter le cas des fonctions

trigonométriques réciproques et logarithmes.

Proposition 4.1. Les fonctions sin et cos sont continues.

Démonstration. cos est continue (voir série). Par suite, comme sin(x) = cos( ),

Corollaire 4.2. Les fonctions tan et cot sont continues sur leur domaine de définition.

Démonstration. tan(x) = et cot(x) =

Exemple 4.3. Considérons la fonction f définie par f(x) = sin

(↓
x+ 1↓
x→ 1

)
.

D(f) = . Cette fonction est continue sur son domaine de définition car

Etudions son comportement dans les bords de son ensemble de définition.

Esquisse du graphe :

6



Continuité Euler 3ème année

Proposition 4.4. Toute fonction f : I ≃ R définie sur un intervalle I ↖ R qui est injective et

continue est strictement monotone.

Démonstration. Supposons par l’absurde que f n’est pas strictement monotone. Il existe donc trois

points a, b, c ↗ I avec a < b < c, mais avec f(b) non strictement compris entre f(a) et f(c).

Il y a alors deux cas :
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Théorème 4.5. Soit f une fonction réelle bijective et continue.

Alors la fonction réciproque f�1
est aussi continue.

Démonstration. Nous allons supposer par l’absurde que la fonction réciproque n’est pas continue,

donc qu’il existe une suite (yn) qui converge, disons vers b � D(f�1), mais telle que son image

(f�1(yn)) ne converge pas vers f�1(b).

Comme f�1
est la réciproque de f , on peut définir une suite (xn) et un nombre a � R tels que

f(xn) = yn pour tout n � N et f(a) = b en posant simplement xn = f�1(yn) et a = f�1(b).

Puisque (xn) ne converge pas vers a, par définition de la convergence, il existe un ✏ > 0 tel que

pour tout N � N, il existe k � N avec k � N mais |xk p a| � ✏. Par conséquent,

soit xk � a+ ✏, soit xk 8 ap ✏.

Par la proposition précédente nous savons que f est strictement monotone, supposons monotone

croissante, le cas décroissant étant similaire, si bien que pour tous les k � N ci-dessus, on a

soit yk = f(xk) � f(a+ ✏) = f(a) + � = b+ �, soit yk = f(xk) 8 f(ap ✏) = bp �!.

où � = f(a+ ✏)p f(a) > 0 et �! = f(a)p f(ap ✏) > 0.

Dans les deux cas, cela contredit le fait que la suite (yn) converge vers b.
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Exemple 4.6. Toutes les fonctions réciproques des fonctions trigonométriques

arccos : [→1; 1] ≃ [0; ϱ] arcsin : [→1; 1] ≃ [→ε
2 ;

ε
2 ]

arctan : ]→↙;↙[ ≃ ]→ε
2 ;

ε
2 [ arccot : ]→↙;↙[ ≃ ]0; ϱ[

sont continues.

Pour terminer nous aimerions appliquer ce résultat à la réciproque de la fonction exponentielle,

c’est-à-dire au logarithme. Il nous faut pour cela établir la continuité de expa.

Proposition 4.7. La fonction expa : R ≃ R↓
+ est continue pour tout a > 0.

Démonstration. Nous avons défini la fonction expa en prolongeant par continuité l’application

f : Q ≃ R
x ⇒≃ ax

La fonction expa est donc continue par construction.

Corollaire 4.8. Soit a > 0 et a ⇑= 1. Alors la fonction loga : R↓
+ ≃ R est continue.

Démonstration. loga : R↓
+ ≃ R est la fonction réciproque de expa : R ≃ R↓

+ qui est continue.
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