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Why do we heed models?

 Relative inaccessibility of aquifers

e Scarce data in the subsurface requires conceptual
model for analysis

e Complexity of nature requires simplification

e Slowness of processes (contaminant transport,
climate change) requires predictive capability

e Large effort in interpretation (for models) justified by
high cost of data
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Where are groundwater
models required?

e Forimproved understanding of the functioning of
aquifers (e.g. determination of aquifer parameters)

 For prediction of water flow and/or transport (e.g.
contaminants, both conservative and reactive)

* For design of measures of aquifer management (e.g.
contaminant remediation, pumping site)

 Forrisk analysis (e.g. contamination, sustainable water
management)
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Examples for groundwater models

e |[nstallation of new well fields

— Sustainability? Environmental impacts? Effects on
water quality?

e Groundwater protection zones
— Size and shape of well catchments, travel times

* Design of remediation measures

— Feasibility, optimization of costs

* Risk analysis of waste repositories
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Types of groundwater models

* Flow models (saturated flow)

e Solute transport models (hon-reactive, dissolved
substances)

e Reactive transport models (simple to complex
multi-component reactive transport)

e Heat transport models (heat behaves analogous to
dissolved substances)

e Multiphase flow and transport (unsaturated zone)

e Other coupled models including density dependent
flow, thermo-hydro-mechanical coupling
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Basic Principles for Modeling

e Starting from first principles:
— Conservation of mass (or volume if density is constant)
— Conservation of dissolved mass

e General approach based on the following quantities:

— Extensive quantity @ (volume, mass)

— Intensive quantity ¢ = extensive quantity per unit volume
(porosity, concentration)

—  Fluxj (of volume, mass) (quantity per unit area and time)

— Source-sink distribution o (volume per geometric unit
volume and unit time, mass per unit water volume and unit
time)
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Basic principle in 1D

For time interval [¢, t+Af]
Cross sectional area 4

Volume I'=4 Ax

Change in storage

Flux;,

Flux,,

Gain/loss from volume
due to sources/sinks

>

X

Conservation law in words:

(Fluxy, — Flux,,;) - A - At + Source -V - At = Storage
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Basic principle in 1D
[ j(X)—j(x+Ax)|AAt + oV At = D(t+Ar)—D(¢)

Division by (A¢, V= Ax A) yields:

Jx)—jx+A) o (t+AN)—c(0)

Ax At

In the limit: At > 0, Ax —> O: —— 40 =—
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Basic principle in 3D

Balance equation:

_a]x 6Jy 6]2 O‘:@—g
ox Oy Oz ot
or
ot

V -(])) : Divergence of flux vector j
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Water balance in 1D

For compressible water
Change in storage of water can be seen as

Time interval [7, t+A¢] a change in intensive quantity (= porosity)

/

=) o =V, (r+ A0)
V=4 Ax Gain/loss by volume
Ax | due to sources/sinks w
| | >
X x+Ax ¥

Conservation equation for water volume:

[vx (x)—v, (x+Ax)] AN+wV A=V __ (+A)-V ()
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Water balancein 1D

Division by (At, V' = Ax A) yields:
_vx(x+Ax)—vx(x) e AV, e 1V An
Ax At At

— an + w= an ah (Vwater/V:n)
Ox oh ot

In the limit:

Using the definition of specific storage S, [L']
and Darcy‘s law with hydraulic conductivity

on oh 9, oh oh
— =S and v =-K— [) —(K—)+w=S,—
oh * Ox Ox ( 8x) "= Ot
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Generalization to 3D

OV @Vy oV, oh
——X ——Z+w=35,—
ox Oy Oz Ot
ov
with v=-KV/4 and v, gL o, =V-v
ox oy Oz
oh + |Initial condition

V-(KVh) +w=S$, ot + Boundary conditions

Multitude of aquifers through distribution of K, $, and w
and of initial and boundary conditions
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In practical applications:
often 2D and 2.5D models

2D confined aquifer: by integration over z-coordinate

V- (T Vh) T w=4S % with  T=K - (Top-Bottom=thickness)
Ot S= S8, (Top-Bottom=thickness)

2D unconfined aquifer: by integration over z-coordinate

V~(K-(h—Bott0m)Vh)+w:S% withS;ne=drair)able
Ot porosity

2.5D by vertical coupling of 2D layers through leakage-term

Kvert

q= wWj_1- (hlayeri — hlayer i—1) + w; (hlayerl’ — hlayer i+1) with w = Ay
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Boundary conditions for flow

e 1sttype BC:/ on boundary |
specified (water level-Dirichlet)

e 2"dtype BC:0h/0On given on
boundary (water flow-Neumann)

e 39typeBC: «a-h+ [-0h/0On
given on boundary (Cauchy)
e Further:

- Free surface: p=0

- Evaporation boundary

- Moving boundary (free surface)
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Practical rules for boundary
conditions of flow models

e Use natural hydrogeological boundaries (e.g., rivers, water divides,

aquifer limits)

e Use as few fixed head boundaries as possible (at leastoneis

necessary in a steady state model)

e Atupstream boundaries use fixed flux boundary. At downstream

boundaries use fixed head boundary.
e Use third type boundary conditions for distant fixed heads.

e Streamlines are boundaries of the second type (no flow

perpendicular to streamline)
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And now the same for transport
of a solute

e The flux is more complicated. 7 7

. t=0 t = At
e |tis composed of: /

— Advective flux  J,, =V

— Diffusive flux Juy =—n.D, Ve r 1

u=2~2a

- Dispersive flux  j, =-n, DVc\

v is specific flux (Darcy velocity)

e Total flux: b =1J. +jdl.ﬁf +jdl.sp
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Mass balancein 1D

Time interval [, t+Af]
Storage of dissolved solute

jtotal,x (x) ]total,x (’x + A)C)
Losses from degradation and
V=A Ax reaction according to first-order

reaction. Gains by injection
>

X x+Ax
X
Conservation equation for dissolved

(jtotal,x(x) — Jtotarx (X + Ax)) AAt—A-cong VAt +w-cy - V- At = (m(t + At) — m(D))
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Mass balance in 1D
Division by (At, V' = Ax A) yields:

(M) =V, ¢0)/V

( water

_ ] total x (x + A)C ) B J total x (x)

—An,c+wc, =
Ax At
o
nthetimit:  —Zeax _ 35 oo = SO
ox ot
Substitute of expression into fluxes:
(v, c)  d(n.c)

D +D,)—)—An,c+ =
e (n ( ) ) n,c+we, Py

For constant effective porosity n, and pore velocity u = v/n,:

EICED, +—((D +D )—j de+

Ox OX

we, _de

n, Ot
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Mass balance: Generalization to 3D

With o(L.c) + ou,©) + ou.C) =V -(uc)

Ox Oy Oz
and ) — !n a system,
D 0 0 in whichu is
L parallelto
Jag i, = —(D,, +D)Ve D=0 D, O x-axis!
0 0 D,
—V-(ue)+V-((D, +D)Ve)—Ac+ i = o
n ot

e

Again: Initial condition + Boundary conditions
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Boundary conditions for
transport problems

e 1sttype BC: Concentration ¢ prescribed on the

Transmission BC

boundary. This determines the advective flux.

e 2ndtype BC: Derivative Oc/On

prescribed on boundary. This determines the Impervious

diffusive-dispersive flux. Only used to make a no-
flow boundary impervious for diffusion/dispersion.

e 3dtypeBC: a-c+ [-Oc/on

prescribed on the boundary. This determines the total

mass flux.

e Transmission BC: 0°c/on’ =0

along boundary to keep the concentration gradient / Impervious

c=0

constant (implementation: D = 0 on boundary cell).
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Building a groundwater model

Problem
(specific need/question to answer)
Hypotheses
Conceptual model h

Model validation
nst data

I____{;____

]

from|. Lunati (Empa)
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Where does the data come from?

e Geometry:

* Top-Bottom: boreholes, geophysics
* Surface: LIDAR, Synthetic Aperture Radar

* Transmissivity, Storage coefficient:
* Pumpingtests
* Aquifer recharge:
* Soil water balance, analysis of low water discharge, and environmental tracers

 River watertable, riverbed
 Geodetic surveys

* Pumpingrates
* Recording of waterworks

* Major difficulties (data): inflows across boundaries, leakage factors
* From model calibration
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Ideally, all parameters and
boundary conditions are known
and can be perfectly

parameterized

Reality: Uncertainty in parameters
and boundary conditions, but
head values that could be used
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Methods of spatial discretization

Finite Differences
(explained here)

Finite Elements

Finite Volumes
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® Balance over a volume
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Methods of spatial discretization

Formal mathematical approach

Replacement of the differential equation by the difference quotient

* More illustrative approach:

Arranging the aquifer in rectangular cells

Setting up the water balance for each cell

Expressing water balance in unknown potential heads (Darcy)

Solving the resulting system of equations
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Methods of temporal discretization

To solve the transient equation, t’ needs to be defined:
Explicit t' =t
Implicit t* = {+At
Crank-Nicolson (implicit) h(t) = 0.5(h(t+At)+h(t))

Each time step is resolved for h;(t+Af). The solution is used as initial
conditions for the next time step.

A steady-state groundwater model simulates conditions where
properties and flows are constant over time (i.e., storage term is
equal to zero).

DBAUG L



Finite Differences

Example 2D flow

oh
S—=V({IVh)+g
ot
Balance at single cells (block-centered method)
y

Thickness =
Thickness of
the aquifer
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Finite Differences

Flows between cells and neighboring cells
Balance:

At(Ql +Q2 +Q3 +Q4 +Q)

(o (¢ + At)—hy(2)) SAxAy
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Calibration: parameter estimation

Improve the model by comparing it with the data

Adjust unknown model parameters to match observations
* Either steady-state or transient
* |tcan be done “by hand” orin an automated way
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