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Exercise Sheet 4 – Solutions

Exercise 1: Let M , N and P be smooth manifolds, let F : M → N and G : N → P be
smooth maps, and let p ∈ M . Prove the following assertions:

(a) The map dFp : TpM → TF (p)N is R-linear.

(b) d(G ◦ F )p = dGF (p) ◦ dFp : TpM → T(G◦F )(p)P .

(c) d(IdM)p = IdTpM : TpM → TpM .

(d) If F is a diffeomorphism, then dFp : TpM → TF (p)N is an isomorphism, and it holds
that (dFp)

−1 = d(F−1)F (p).

Solution:

(a) Let v, w ∈ TpM and λ, µ ∈ R. For any f ∈ C∞(N), we have

dFp(λv + µw)(f) = (λv + µw)(f ◦ F )

= λ v(f ◦ F ) + µw(f ◦ F )

= λ dFp(v)(f) + µ dFp(w)(f)

=
(
λ dFp(v) + µ dFp(w)

)
(f),

which implies
dFp(λv + µw) = λ dFp(v) + µ dFp(w).

(b) For any v ∈ TpM and any f ∈ C∞(P ), we have

d(G ◦ F )p(v)(f) = v
(
f ◦ (G ◦ F )

)
= v
(
(f ◦G) ◦ F

)
= dFp(v)(f ◦G)

= dGF (p)

(
dFp(v)

)
(f)

=
(
dGF (p) ◦ dFp

)
(v)(f),

and thus
d(G ◦ F )p(v) =

(
dGF (p) ◦ dFp

)
(v).

1



(c) For any v ∈ TpM and any f ∈ C∞(M), we have

d(IdM)p(v)(f) = v
(
f ◦ IdM

)
= v(f),

and hence
d(IdM)p(v) = v = IdTpM(v),

which proves the claim.

(d) Since F is a diffeomorphism, we have

F ◦ F−1 = IdN and F−1 ◦ F = IdM ,

so by (b) and (c) we obtain

IdTpM = d(IdM)p = d
(
F−1 ◦ F

)
p
= d

(
F−1

)
F (p)

◦ dFp

and
IdTF (p)N = d(IdN)F (p) = d

(
F ◦ F−1

)
F (p)

= dFp ◦ d
(
F−1

)
F (p)

.

Hence, dFp is an R-linear isomorphism with inverse

(dFp)
−1 = d

(
F−1

)
F (p)

.

Remark. For those familiar with categorical language, let us put Exercise 1 into context.
Let Man∞

∗ be the category of pointed smooth manifolds, i.e., the category whose objects
are pairs (M, p), where M is a smooth manifold and p ∈ M , and whose morphisms
F : (M, p) → (N, q) are smooth maps F : M → N with F (p) = q. Denote by VectR the
category of R-vector spaces. Parts (a), (b) and (c) of the above exercise show that the
assignment T : Man∞

∗ → VectR, which to a pointed smooth manifold (M, p) assigns the
tangent space T (M, p) = TpM and which to a smooth map F : (M, p) → (N, q) assigns
the differential T (F ) = dFp of F at p, is a covariant functor. It is a general fact that
functors send isomorphisms to isomorphisms, and that T (F−1) = T (F )−1, which is why
part (d) of Exercise 1 is a formal consequence of the previous parts.

Exercise 2 (The tangent space to a vector space): Let V be a finite-dimensional R-vector
space with its standard smooth manifold structure. Fix a point a ∈ V .

(a) For each v ∈ V define a map

Dv

∣∣
a
: C∞(V ) −→ R, f 7→ d

dt

∣∣∣∣
t=0

f(a+ tv).

Show that Dv

∣∣
a
is a derivation at a.

(b) Show that the map
V → TaV, v 7→ Dv

∣∣
a

is a canonical isomorphism, such that for any linear map L : V → W the following
diagram commutes:
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V TaV

W TLaW.

∼=

L dLa

∼=

Solution:

(a) Fix v ∈ V . Choose a basis E1, . . . , En of V and let e1, . . . , en be the standard basis
of Rn. Let φ : Rn → V be the induced isomorphism, which is a diffeomorphism by
definition of the standard smooth structure, see [Exercise Sheet 2, Exercise 1], and by
Example 2.14 (2). Let a⃗ := φ−1(a) and v⃗ := φ−1(v). By Exercise 1(d) the differential
dφa⃗ : Ta⃗Rn → TaV is an R-linear isomorphism.

By Proposition 3.3 (a), the map

D̂v⃗

∣∣
a⃗
: C∞(Rn) −→ R, f 7→ d

dt

∣∣∣∣
t=0

f (⃗a+ tv⃗)

is a derivation of C∞(Rn) at a⃗. Let us now show that

dφa⃗

(
D̂v⃗

∣∣
a⃗

)
= Dv

∣∣
a

as functions from C∞(V ) to R, thereby proving that Dv

∣∣
a
is a derivation of C∞(V ) at a,

as dφa⃗

(
D̂v⃗

∣∣
a⃗

)
is so. To this end, if f ∈ C∞(V ) is arbitrary, then

dφa⃗

(
D̂v⃗

∣∣
a⃗

)
(f) = D̂v⃗

∣∣
a⃗
(f ◦ φ) = d

dt

∣∣∣∣
t=0

(f ◦ φ)(⃗a+ tv⃗) =
d

dt

∣∣∣∣
t=0

f(a+ tv) = Dv

∣∣
a
(f).

As f was arbitrary, we conclude that dφa⃗

(
D̂v⃗

∣∣
a⃗

)
= Dv

∣∣
a
, which yields the assertion.

(b) Denote by η(V,a) the map V → TaV, v 7→ Dv

∣∣
a
. In part (a) we proved that

dφa⃗ ◦ η(Rn ,⃗a)(v⃗) = η(V,φ(a⃗)) ◦ φ(v⃗)

for all a⃗, v⃗ ∈ Rn. In other words, we have dφa⃗ ◦ η(Rn ,⃗a) = η(V,φ(a⃗)) ◦ φ. In particular, since
in Proposition 3.3 (b) we already saw that η(Rn ,⃗a) is an isomorphism, and as dφa⃗ and φ
are isomorphisms as well, we conclude that η(V,φ(a⃗)) is an isomorphism.

It remains to check the above diagram commutes. First, since L is linear, it is in
particular smooth (all first order partial derivatives with respect to some basis exist and
are constant, and all higher order partial derivatives vanish). Now, let v ∈ V and f ∈
C∞(W ) be arbitrary. We have(

dLa ◦ η(V,a)(v)
)
(f) = dLa

(
Dv

∣∣
a

)
(f) = Dv

∣∣
a
(f ◦ L)

=
d

dt

∣∣∣∣
t=0

f
(
L(a+ tv)

)
=

d

dt

∣∣∣∣
t=0

f(La+ tLv) = DLv

∣∣
La
(f)

= η(W,La)(Lv)(f) =
(
η(W,La) ◦ L(v)

)
(f).

As v and f were arbitrary, we conclude that

dLa ◦ η(V,a) = η(W,La) ◦ L;

in other words, the diagram in part (b) is commutative.
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Remark. It is important to understand that each isomorphism V ∼= TaV is canonically
defined, independently of any choice of basis (notwithstanding the fact that we chose a
basis to prove that it is an isomorphism). Due to this result, we can routinely identify
tangent vectors to a finite-dimensional vector space with elements of the space itself.

More generally, if M is an open submanifold of an R-vector space V , we can combine
our identifications TpM ↔ TpV ↔ V to obtain a canonical identification of each tangent
space to M with V . For example, since GL(n,R) is an open submanifold of the R-vector
space M(n,R), see [Exercise Sheet 2, Exercise 3], we can identify its tangent space at
each point X ∈ GL(n,R) with the full space of matrices M(n,R).

Remark. For those familiar with categorical language, let us put Exercise 2 into context.
The category Man∞

∗ of pointed smooth manifolds described in the previous remark has
the category VectR,∗ of pointed vector spaces as a subcategory (but not as a full subcat-
egory, since only linear maps between pointed vector spaces are considered). Therefore,
the tangent space yields a functor T : VectR,∗ → VectR by restricting to this subcate-
gory. But there is also another natural functor between these two categories, namely, the
forgetful functor U : VectR,∗ → VectR which to a pointed vector space (V, a) associates
the underlying vector space V , and to a linear map L : (V, a) → (W, b) (i.e., a linear map
with La = b) associates the linear map L : V → W . In the preceding exercise, we showed
that η• is a natural transformation from U to T (by showing that the given diagram
commutes), and in fact that it is a natural isomorphism (by showing that each individual
map η(V,a) : U(V, a) → T (V, a) is an isomorphism).

Exercise 3 (The tangent space to a product manifold): Let M1, . . . ,Mk be smooth man-
ifolds, where k ≥ 2. For each j ∈ {1, . . . , k}, let

πj : M1 × . . .×Mk → Mj

be the projection onto the j-th factor Mj. Show that for any point p = (p1, . . . , pk) ∈
M1 × . . .×Mk, the map

α : Tp

(
M1 × . . .×Mk

)
−→ Tp1M1 ⊕ . . .⊕ TpkMk

v 7→
(
d(π1)p(v), . . . , d(πk)p(v)

)
is an R-linear isomorphism.

Solution: The map α is R-linear: this follows readily from the fact that every component
d(πj)p is R-linear. Note also that both vector spaces have dimension

∑
i dimMi. Thus,

to show that α is an isomorphism, it suffices to prove that it is surjective. We will achieve
this by constructing a right-inverse to α.

To this end, for each 1 ≤ j ≤ k, define the map

ιj : Mj → M1 × . . .×Mk

mj 7→ (p1, . . . , pj−1,mj, pj+1, . . . , pk).

By part (b) of [Exercise Sheet 3, Exercise 4] we infer that ιj is smooth, because πj′ ◦ ιj is
clearly either constant or the identity (so in particular smooth) for all 1 ≤ j′ ≤ k, with
ιj(pj) = p. Therefore, we obtain a map

d(ιj)pj : TpjMj → Tp(M1 × . . .×Mk).
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We now define the following map:

β : Tp1M1 ⊕ . . .⊕ TpkMk → Tp

(
M1 × . . .×Mk

)
(v1, . . . , vk) 7→ d(ι1)p1(v1) + . . .+ d(ιk)pk(vk).

We will show that β is a right-inverse for α. To this end, let

(v1, . . . , vk) ∈ Tp1M1 ⊕ . . .⊕ TpkMk.

Then

(α ◦ β)(v1, . . . , vk) = α

(∑
j

d(ιj)pj(vj)

)
=
∑
j

α
(
d(ιj)pj(vj)

)
. (∗)

Now, let 1 ≤ i, j ≤ k be arbitrary. Note that

d(πi)p
(
d(ιj)pj(vj)

)
= d(πi ◦ ιj)pj(vj) = δijvj, (∗∗)

because if i ̸= j, then πi ◦ ιj is constant and thus has 0 differential by Lemma 3.5 (a),
while if i = j, then πi ◦ ιj = IdMj

and thus its differential is the identity by Exercise 1(c).
By (∗) and (∗∗) we obtain

(α ◦ β)(v1, . . . , vk) =
∑
j

(δ1jv1, . . . , δkjvk) = (v1, . . . , vk),

and since (v1, . . . , vk) was arbitrary, we conclude that α ◦ β = Id. It follows that α is
surjective, and hence an isomorphism, as explained above.

Remark. Since the isomorphism α in Exercise 3 is canonically defined, independently of
any choice of coordinates, we can consider it as a canonical identification, and we will
always do so. Thus, for example, we identify T(p,q)(M ×N) with TpM ⊕ TqN , and treat
both TpM and TqN as subspaces of T(p,q)(M ×N).

Exercise 4 (to be submitted): Consider the inclusion map ι : S2 ↪→ R3, where both S2

and R3 are endowed with the standard smooth structure. Let p = (p1, p2, p3) ∈ S2 with
p3 > 0. What is the image of the differential dιp : TpS2 → TpR3?

Solution: Observe that the given point p ∈ S2 is contained in the domain of the smooth
chart (U+

3 , φ
+
3 ) for S2, where

U+
3 =

{
(x1, x2, x3) ∈ R3 | x3 > 0

}
and

φ+
3 : U

+
3 ∩ S2 → B2, (x1, x2, x3) 7→ (x1, x2)

with coordinate functions φ1 and φ2 (defined in the obvious manner). Recall also that
the inverse of φ+

3 is the map

(φ+
3 )

−1 : B2 → U+
3 ∩ S2, (u1, u2) 7→

(
u1, u2,

√
1− (u1)2 − (u2)2

)
.
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Therefore, the coordinate representation ι̂ of ι : S2 ↪→ R3 with respect to the charts
(U+

3 , φ
+
3 ) and (R3, IdR3) is the function

ι̂ (u1, u2) =
(
IdR3 ◦ ι ◦ (φ+

3 )
−1
)
(u1, u2) =

(
u1, u2,

√
1− (u1)2 − (u2)2

)
,

and the coordinate representation p̂ of p ∈ S2 is the point p̂ = φ+
3 (p) = (p1, p2) ∈ B2.

Since the Jacobian matrix of ι̂, given by

J(u1, u2) =


1 0

0 1

− u1√
1− (u1)2 − (u2)2

− u2√
1− (u1)2 − (u2)2

 ,

represents dιp : TpS2 → TpR3 in the coordinate bases{
∂

∂φ1

∣∣∣∣
p

,
∂

∂φ2

∣∣∣∣
p

}
⊆ TpS2 and

{
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

,
∂

∂x3

∣∣∣∣
p

}
⊆ TpR3,

we deduce that

dιp

(
∂

∂φ1

∣∣∣∣
p

)
= 1 · ∂

∂x1

∣∣∣∣
p

+ 0 · ∂

∂x2

∣∣∣∣
p

− p1√
1− (p1)2 + (p2)2

· ∂

∂x3

∣∣∣∣
p

=
∂

∂x1

∣∣∣∣
p

− p1

p3
∂

∂x3

∣∣∣∣
p

and

dιp

(
∂

∂φ2

∣∣∣∣
p

)
= 0 · ∂

∂x1

∣∣∣∣
p

+ 1 · ∂

∂x2

∣∣∣∣
p

− p2√
1− (p1)2 + (p2)2

· ∂

∂x3

∣∣∣∣
p

=
∂

∂x2

∣∣∣∣
p

− p2

p3
∂

∂x3

∣∣∣∣
p

.

Thus, the image of dιp is the R-vector space spanned by the above two vectors, which

can be identified with the vectors (1, 0,−p1

p3
) and (0, 1,−p2

p3
), respectively, in R3. It is now

easy to check that this 2-dimensional R-vector space is the orthogonal complement of ⟨p⟩;
namely,

dιp
(
TpS2

)
= ⟨p⟩⊥ ∼=

{
v ∈ R3 | ⟨v, p⟩ = 0

}
.

Exercise 5: Prove the following assertions:

(a) Tangent vectors as velocity vectors of smooth curves : Let M be a smooth manifold.
If p ∈ M , then for any v ∈ TpM there exists a smooth curve γ : (−ε, ε) → M such
that γ(0) = p and γ′(0) = v.

(b) The velocity of a composite curve: If F : M → N is a smooth map and if γ : J → M
is a smooth curve, then for any t0 ∈ J , the velocity at t = t0 of the composite curve
F ◦ γ : J → N is given by

(F ◦ γ)′(t0) = dF
(
γ′(t0)

)
.
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(c) Computing the differential using a velocity vector : If F : M → N is a smooth map,
p ∈ M and v ∈ TpM , then

dFp(v) = (F ◦ γ)′(0)

for any smooth curve γ : J → M such that 0 ∈ J , γ(0) = p and γ′(0) = v.

Solution:

(a) Let (U,φ) be a smooth coordinate chart for M centered at p ∈ M with components
functions (x1, . . . , xn), and write v = vi ∂

∂xi

∣∣
p
in terms of the coordinate basis. For suf-

ficiently small ε > 0, let γ : (−ε, ε) → U be the curve whose coordinate representation
is

γ(t) = (tv1, . . . , tvn).

This is a smooth curve with γ(0) = p and

γ′(0) =
dγi

dt
(0)

∂

∂xi

∣∣∣∣
p

= vi
∂

∂xi

∣∣∣∣
p

= v.

(b) By definition and by Exercise 1(b) we obtain

(F ◦ γ)′(t0) = d(F ◦ γ)

(
d

dt

∣∣∣∣
t0

)
= (dF ◦ dγ)

(
d

dt

∣∣∣∣
t0

)

= dF

(
dγ

(
d

dt

∣∣∣∣
t0

))
= dF

(
γ′(t0)

)
.

(c) Follows immediately from (a) and (b).
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