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Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 4 — Solutions

Exercise 1: Let M, N and P be smooth manifolds, let F': M — N and G: N — P be
smooth maps, and let p € M. Prove the following assertions:

(a) The map dF,: T,M — Tp@)N is R-linear.

(b) d(G o F)p = dGF(p) o dei TpM — T(Gop)(p)P.

(c) d(Idnr)p = Idgpr: T,M — T,M.
)

(d) If F is a diffeomorphism, then dF},: T,M — Ty, N is an isomorphism, and it holds
that (de>_1 = d(F_l)F(p).
Solution:

(a) Let v,w € T,M and A\, u € R. For any f € C*(N), we have

A, (v + ) (f) = (Ao + ) (f o F)
— Ao(f o F) + puw(f o F)
— A, (v)(f) + pdFy(w)(f)
— (AE,(v) + pdFy(w)) (f),

which implies
dF,(Av + pw) = NdF,(v) + pdF,(w).

b) For any v € T,M and any f € C*(P), we have
P

d(GoF)p(U)(f) = U(fo (GOF)) = U((foG) oF)
= dF,(v)(f o G)
= dGr(p) (dF,(v)) (f)
= (dGr) o dF,) (v)(f),

and thus
A(G o F)y(v) = (AGr) 0 dF,) (v).
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(c) For any v € T,M and any f € C*°(M), we have

d(Idp)p(0)(f) = v(f o Tdy ) = v(f),
and hence
d(IdM)p(U) =V = IdTpM(U),
which proves the claim.

(d) Since F'is a diffeomorphism, we have
FoF'=Idy and F'oF =Idy,

so by (b) and (c) we obtain
1dr, = d(1d)y = d (F' o F)

and
Idp,,~ = d(Idn)r@) = d (F © Fﬁl)F(p) =dF,od (Fil)

Hence, dF), is an R-linear isomorphism with inverse

(de)_l =d (F_1>F(p) :

Remark. For those familiar with categorical language, let us put Ezercise 1 into context.
Let Man;° be the category of pointed smooth manifolds, i.e., the category whose objects
are pairs (M,p), where M is a smooth manifold and p € M, and whose morphisms
F: (M,p) = (N,q) are smooth maps F': M — N with F(p) = q. Denote by Vectg the
category of R-vector spaces. Parts (a), (b) and (c) of the above exercise show that the
assignment 7: Man® — Vectg, which to a pointed smooth manifold (M, p) assigns the
tangent space T'(M,p) = T,M and which to a smooth map F': (M,p) — (N, q) assigns
the differential T'(F') = dF), of F at p, is a covariant functor. It is a general fact that
functors send isomorphisms to isomorphisms, and that T(F~') = T(F)~!, which is why
part (d) of Ezercise 1 is a formal consequence of the previous parts.

Exercise 2 (The tangent space to a vector space): Let V be a finite-dimensional R-vector
space with its standard smooth manifold structure. Fix a point a € V.

(a) For each v € V define a map

D,| : C*(V) — R, f|—>£ fla+tv).
a dt{,_,

Show that D, , sa derivation at a.

(b) Show that the map
V1T, V, v— D, "

is a canonical isomorphism, such that for any linear map L: V — W the following
diagram commutes:



W ———— Ty, W.

Solution:

(a) Fix v € V. Choose a basis Ei,...,FE, of V and let ey,..., e, be the standard basis
of R*. Let ¢: R®* — V be the induced isomorphism, which is a diffeomorphism by
definition of the standard smooth structure, see [Ezercise Sheet 2, Ezercise 1], and by
Ezample 2.14(2). Let @ = ¢~ '(a) and ¢ := o (v). By Exercise 1(d) the differential
dpg: TzR™ — T,V is an R-linear isomorphism.

By Proposition 3.3(a), the map

Dy|.: C*(R") — R, f+s K

o
i, Jar

is a derivation of C*°(R") at @. Let us now show that

dg@a(D{f}a) = Dv‘a
as functions from C'*°(V') to R, thereby proving that Dv|a is a derivation of C*°(V) at a,
as d(pg(ﬁg}a) is so. To this end, if f € C*(V) is arbitrary, then

~ d

~ d
dea(Del ) (1) = Dil (Fow) = 5| (Fowa+t) = 5| fla+tw) =Dl (h)
t=0 t=0

As f was arbitrary, we conclude that dgpg(f)v~|5) = Dv|a, which yields the assertion.
(b) Denote by n(y,q.) the map V — T,V, v — D”|a' In part (a) we proved that

dpg o N(rn a) (V) = Nvea) © ©(V)

for all @, v € R". In other words, we have dpg o nwrna = Nv,e@) © - In particular, since
in Proposition 3.3(b) we already saw that ngn g is an isomorphism, and as dyz and ¢
are isomorphisms as well, we conclude that 7y, () is an isomorphism.

It remains to check the above diagram commutes. First, since L is linear, it is in
particular smooth (all first order partial derivatives with respect to some basis exist and
are constant, and all higher order partial derivatives vanish). Now, let v € V and f €
C>°(W) be arbitrary. We have

(dLa o n(V,a)(U))(f) = dLa (Dv|a) (f) = Dv‘a (f o L)
d
== f(Lla+w)=—  f(Lattlv) =Dl (f)
t=0 t=0
= 1w,y (L0)(f) = (now,za) © L(0)) ().
As v and f were arbitrary, we conclude that
dLg o Nv,a) = TN(W,La) © La

in other words, the diagram in part (b) is commutative.
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Remark. It is important to understand that each isomorphism V' = T,V is canonically
defined, independently of any choice of basis (notwithstanding the fact that we chose a
basis to prove that it is an isomorphism). Due to this result, we can routinely identify
tangent vectors to a finite-dimensional vector space with elements of the space itself.

More generally, if M is an open submanifold of an R-vector space V', we can combine
our identifications T, M < T,V <+ V to obtain a canonical identification of each tangent
space to M with V. For example, since GL(n,R) is an open submanifold of the R-vector
space M(n,R), see [Ezercise Sheet 2, Ezercise 3], we can identify its tangent space at
each point X € GL(n,R) with the full space of matrices M (n,R).

Remark. For those familiar with categorical language, let us put Ezercise 2 into context.
The category Man;® of pointed smooth manifolds described in the previous remark has
the category Vectg . of pointed vector spaces as a subcategory (but not as a full subcat-
egory, since only linear maps between pointed vector spaces are considered). Therefore,
the tangent space yields a functor 7': Vectr, — Vecty by restricting to this subcate-
gory. But there is also another natural functor between these two categories, namely, the
forgetful functor U: Vectgr . — Vectr which to a pointed vector space (V,a) associates
the underlying vector space V', and to a linear map L: (V,a) — (W,b) (i.e., a linear map
with La = b) associates the linear map L: V' — W. In the preceding exercise, we showed
that 7, is a natural transformation from U to T (by showing that the given diagram
commutes), and in fact that it is a natural isomorphism (by showing that each individual
map 7v,q): U(V,a) = T(V,a) is an isomorphism).

Exercise 3 (The tangent space to a product manifold): Let My, ..., M} be smooth man-
ifolds, where k > 2. For each j € {1,...,k}, let

7Tj:M1><...><Mk—>Mj

be the projection onto the j-th factor M;. Show that for any point p = (p1,...,px) €
My x ... x My, the map

o Tp(Ml X ... X Mk) — T, My & ... 0T, My
v (d(m)p(v), e ,d(ﬂk)p(v))
is an R-linear isomorphism.
Solution: The map « is R-linear: this follows readily from the fact that every component
d(m;), is R-linear. Note also that both vector spaces have dimension ) . dim M;. Thus,
to show that « is an isomorphism, it suffices to prove that it is surjective. We will achieve

this by constructing a right-inverse to «.
To this end, for each 1 < 5 < k, define the map

Lj: Mj—>M1><...><Mk
my; = (p17' < Pi—1, My, Pivty - - - 7pk>

By part (b) of [Ezercise Sheet 3, Exercise 4] we infer that ¢; is smooth, because ;s o ¢; is
clearly either constant or the identity (so in particular smooth) for all 1 < j" < k, with
tj(pj) = p. Therefore, we obtain a map

d(Lj)pjl ijMj — Tp(M1 X ... X Mk>
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We now define the following map:

B: T My & ... @ Ty My — Tp(My x ... x My)
(U1, ..o, v) = d(e1)p, (V1) + .o+ d(tk)py (Vk).

We will show that [ is a right-inverse for «. To this end, let
(v1,...,0) €T, M1 & ... & T, M.
Then
(o B)(v1,...,v5) = (Z d(t5)p, (Uj)) = a(d), (v)) - (%)
J

J
Now, let 1 < 4,5 < k be arbitrary. Note that

() (d(15)p, (v5)) = d(mi 0 1)y, (V) = 65505, (%)

because if ¢ # j, then m; o ¢; is constant and thus has 0 differential by Lemma 3.5(a),
while if 7 = j, then 7; 0¢; = Idy, and thus its differential is the identity by Evercise 1(c).
By (%) and (*x) we obtain

(o B)(vy,y...,v5) = Z((Sljvl, e OpU) = (v, .o, U,

J

and since (vq,...,v) was arbitrary, we conclude that a o f = Id. It follows that « is
surjective, and hence an isomorphism, as explained above.

Remark. Since the isomorphism « in Ezercise 3 is canonically defined, independently of
any choice of coordinates, we can consider it as a canonical identification, and we will
always do so. Thus, for example, we identify T, (M x N) with T,M @& T;N, and treat
both T, M and T, N as subspaces of T(, (M x N).

Exercise 4 (to be submitted): Consider the inclusion map ¢: S* < R3  where both S?
and R? are endowed with the standard smooth structure. Let p = (p',p?, p®) € S? with
p® > 0. What is the image of the differential di,: T,S* — T,R??

Solution: Observe that the given point p € S? is contained in the domain of the smooth
chart (U5, p3) for S?, where

Ui ={(a",2°,2°) e R* | 2* > 0}

and
oF: U NS* — B, (2, 2%, 2%) — (2F, 2%)

with coordinate functions ¢! and ? (defined in the obvious manner). Recall also that
the inverse of (3 is the map

(¢1) 1 B2 = U NS, (uhu?) o (ulu?, /T = (2= (2)2))



Therefore, the coordinate representation 7 of ¢: S? < R3? with respect to the charts
(U, ¢oF) and (R3,Idgs) is the function

Tt u?) = (Idzso 00 () 7) (! u?) = (u'u?, VT = (@)? = @)

and the coordinate representation p of p € S? is the point p = ¢5 (p) = (p',p?) € B>
Since the Jacobian matrix of 7, given by

1 0
0 1

J(u' u?) = ;
ul u?

VISR (@P VT @) ()

represents di,: T,S* — T,R? in the coordinate bases

0 0 0 0 0
— |, —| » CT,S? C T,R?
{8901 , 0P p} =15" and {81’1 , Ox%| ) Ox® p} -
we deduce that
0 0 0 p! 0
di, | — =1-—| 4+0- - .
’ (W ) ot " 0|, I ()t (PR 02,
N
Ozl ) 3 O’ ,
and
0 0 0 p? 0
di, | — =0 +1- — .
! (8(,02 p) Oz P Ox? P \/1 - (p1)2 + (p2)2 O p
_0] o
Ox|, p*0x®|,

Thus, the image of d, is the R-vector space spanned by the above two vectors, which
can be identified with the vectors (1,0, —i—;) and (0, 1, —;’—2), respectively, in R3. It is now
easy to check that this 2-dimensional R-vector space is the orthogonal complement of (p);
namely,

du, (T,8%) = (p)"= = {v € R* | (v,p) = 0}.

Exercise 5: Prove the following assertions:

(a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold.
If p € M, then for any v € T,M there exists a smooth curve v: (—¢,¢) — M such
that v(0) = p and 7/(0) = v.

(b) The wvelocity of a composite curve: If F': M — N is a smooth map and if v: J — M
is a smooth curve, then for any ¢y € J, the velocity at t =ty of the composite curve
Fo~:J— N is given by

(F o) (to) = dF (7' (to))-
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(¢) Computing the differential using a velocity vector: If F': M — N is a smooth map,
p € M and v € T,M, then
dF,(v) = (F 07)'(0)

for any smooth curve v: J — M such that 0 € J, y(0) = p and +'(0) = v.

Solution:

(a) Let (U, ) be a smooth coordinate chart for M centered at p € M with components
functions (z!,...,z"), and write v = v' aii ) in terms of the coordinate basis. For suf-
ficiently small € > 0, let v: (—¢,e) — U be the curve whose coordinate representation

1S

v(t) = (toh, ... to"™).
This is a smooth curve with v(0) = p and

dy 0

;0
dt( )Oxi

= -
{2
» Ox

7'(0)

p

(b) By definition and by Ezercise 1(b) we obtain

d )—(dFodV) (%

(F o) (to) = d(F o) (E
=dF <d7 (% )) = dF(+'(to))-

(c) Follows immediately from (a) and (b).

)




