

Differential Geometry II - Smooth Manifolds Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise 1: Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$. Prove the following assertions:

Exercise Sheet 4 – Solutions

- (a) The map $dF_p: T_pM \to T_{F(p)}N$ is \mathbb{R} -linear.
- (b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_pM \to T_{(G \circ F)(p)}P.$
- (c) $d(\operatorname{Id}_M)_p = \operatorname{Id}_{T_pM} : T_pM \to T_pM$.
- (d) If F is a diffeomorphism, then $dF_p: T_pM \to T_{F(p)}N$ is an isomorphism, and it holds that $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Solution:

(a) Let $v, w \in T_pM$ and $\lambda, \mu \in \mathbb{R}$. For any $f \in C^{\infty}(N)$, we have

$$dF_p(\lambda v + \mu w)(f) = (\lambda v + \mu w)(f \circ F)$$

$$= \lambda v(f \circ F) + \mu w(f \circ F)$$

$$= \lambda dF_p(v)(f) + \mu dF_p(w)(f)$$

$$= (\lambda dF_p(v) + \mu dF_p(w))(f),$$

which implies

$$dF_p(\lambda v + \mu w) = \lambda dF_p(v) + \mu dF_p(w).$$

(b) For any $v \in T_pM$ and any $f \in C^{\infty}(P)$, we have

$$d(G \circ F)_p(v)(f) = v(f \circ (G \circ F)) = v((f \circ G) \circ F)$$

$$= dF_p(v)(f \circ G)$$

$$= dG_{F(p)}(dF_p(v))(f)$$

$$= (dG_{F(p)} \circ dF_p)(v)(f),$$

and thus

$$d(G \circ F)_p(v) = (dG_{F(p)} \circ dF_p)(v).$$

(c) For any $v \in T_pM$ and any $f \in C^{\infty}(M)$, we have

$$d(\mathrm{Id}_M)_p(v)(f) = v(f \circ \mathrm{Id}_M) = v(f),$$

and hence

$$d(\mathrm{Id}_M)_p(v) = v = \mathrm{Id}_{T_nM}(v),$$

which proves the claim.

(d) Since F is a diffeomorphism, we have

$$F \circ F^{-1} = \operatorname{Id}_N$$
 and $F^{-1} \circ F = \operatorname{Id}_M$,

so by (b) and (c) we obtain

$$\operatorname{Id}_{T_pM} = d(\operatorname{Id}_M)_p = d\left(F^{-1} \circ F\right)_p = d\left(F^{-1}\right)_{F(p)} \circ dF_p$$

and

$$\operatorname{Id}_{T_{F(p)}N} = d(\operatorname{Id}_N)_{F(p)} = d(F \circ F^{-1})_{F(p)} = dF_p \circ d(F^{-1})_{F(p)}.$$

Hence, dF_p is an \mathbb{R} -linear isomorphism with inverse

$$(dF_p)^{-1} = d(F^{-1})_{F(p)}.$$

Remark. For those familiar with categorical language, let us put Exercise 1 into context. Let \mathbf{Man}_*^{∞} be the category of pointed smooth manifolds, i.e., the category whose objects are pairs (M, p), where M is a smooth manifold and $p \in M$, and whose morphisms $F: (M, p) \to (N, q)$ are smooth maps $F: M \to N$ with F(p) = q. Denote by $\mathbf{Vect}_{\mathbb{R}}$ the category of \mathbb{R} -vector spaces. Parts (a), (b) and (c) of the above exercise show that the assignment $T: \mathbf{Man}_*^{\infty} \to \mathbf{Vect}_{\mathbb{R}}$, which to a pointed smooth manifold (M, p) assigns the tangent space $T(M, p) = T_p M$ and which to a smooth map $F: (M, p) \to (N, q)$ assigns the differential $T(F) = dF_p$ of F at p, is a covariant functor. It is a general fact that functors send isomorphisms to isomorphisms, and that $T(F^{-1}) = T(F)^{-1}$, which is why part (d) of Exercise 1 is a formal consequence of the previous parts.

Exercise 2 (The tangent space to a vector space): Let V be a finite-dimensional \mathbb{R} -vector space with its standard smooth manifold structure. Fix a point $a \in V$.

(a) For each $v \in V$ define a map

$$D_v|_a : C^{\infty}(V) \longrightarrow \mathbb{R}, \ f \mapsto \frac{d}{dt}\Big|_{t=0} f(a+tv).$$

Show that $D_v|_a$ is a derivation at a.

(b) Show that the map

$$V \to T_a V, \ v \mapsto D_v \big|_a$$

is a canonical isomorphism, such that for any linear map $L\colon V\to W$ the following diagram commutes:

$$V \xrightarrow{\cong} T_a V$$

$$\downarrow L \qquad \qquad \downarrow dL_a$$

$$W \xrightarrow{\cong} T_{L_a} W.$$

Solution:

(a) Fix $v \in V$. Choose a basis E_1, \ldots, E_n of V and let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Let $\varphi \colon \mathbb{R}^n \to V$ be the induced isomorphism, which is a diffeomorphism by definition of the standard smooth structure, see [Exercise Sheet 2, Exercise 1], and by Example 2.14(2). Let $\vec{a} := \varphi^{-1}(a)$ and $\vec{v} := \varphi^{-1}(v)$. By Exercise 1(d) the differential $d\varphi_{\vec{a}} \colon T_{\vec{a}}\mathbb{R}^n \to T_aV$ is an \mathbb{R} -linear isomorphism.

By Proposition 3.3(a), the map

$$\widehat{D}_{\vec{v}}|_{\vec{a}} \colon C^{\infty}(\mathbb{R}^n) \longrightarrow \mathbb{R}, \ f \mapsto \frac{d}{dt}|_{t=0} f(\vec{a} + t\vec{v})$$

is a derivation of $C^{\infty}(\mathbb{R}^n)$ at \vec{a} . Let us now show that

$$d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}\big|_{\vec{a}}) = D_v\big|_a$$

as functions from $C^{\infty}(V)$ to \mathbb{R} , thereby proving that $D_v|_a$ is a derivation of $C^{\infty}(V)$ at a, as $d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}})$ is so. To this end, if $f \in C^{\infty}(V)$ is arbitrary, then

$$d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}})(f) = \widehat{D}_{\vec{v}}|_{\vec{a}}(f \circ \varphi) = \frac{d}{dt}\Big|_{t=0} (f \circ \varphi)(\vec{a} + t\vec{v}) = \frac{d}{dt}\Big|_{t=0} f(a + tv) = D_v|_a(f).$$

As f was arbitrary, we conclude that $d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}}) = D_v|_a$, which yields the assertion.

(b) Denote by $\eta_{(V,a)}$ the map $V \to T_a V$, $v \mapsto D_v|_a$. In part (a) we proved that

$$d\varphi_{\vec{a}} \circ \eta_{(\mathbb{R}^n, \vec{a})}(\vec{v}) = \eta_{(V, \varphi(\vec{a}))} \circ \varphi(\vec{v})$$

for all $\vec{a}, \vec{v} \in \mathbb{R}^n$. In other words, we have $d\varphi_{\vec{a}} \circ \eta_{(\mathbb{R}^n, \vec{a})} = \eta_{(V, \varphi(\vec{a}))} \circ \varphi$. In particular, since in *Proposition 3.3*(b) we already saw that $\eta_{(\mathbb{R}^n, \vec{a})}$ is an isomorphism, and as $d\varphi_{\vec{a}}$ and φ are isomorphisms as well, we conclude that $\eta_{(V, \varphi(\vec{a}))}$ is an isomorphism.

It remains to check the above diagram commutes. First, since L is linear, it is in particular smooth (all first order partial derivatives with respect to some basis exist and are constant, and all higher order partial derivatives vanish). Now, let $v \in V$ and $f \in C^{\infty}(W)$ be arbitrary. We have

$$(dL_a \circ \eta_{(V,a)}(v))(f) = dL_a (D_v|_a)(f) = D_v|_a (f \circ L)$$

$$= \frac{d}{dt}|_{t=0} f(L(a+tv)) = \frac{d}{dt}|_{t=0} f(La+tLv) = D_{Lv}|_{La}(f)$$

$$= \eta_{(W,La)}(Lv)(f) = (\eta_{(W,La)} \circ L(v))(f).$$

As v and f were arbitrary, we conclude that

$$dL_a \circ \eta_{(V,a)} = \eta_{(W,La)} \circ L;$$

in other words, the diagram in part (b) is commutative.

Remark. It is important to understand that each isomorphism $V \cong T_a V$ is canonically defined, independently of any choice of basis (notwithstanding the fact that we chose a basis to prove that it is an isomorphism). Due to this result, we can routinely *identify* tangent vectors to a finite-dimensional vector space with elements of the space itself.

More generally, if M is an open submanifold of an \mathbb{R} -vector space V, we can combine our identifications $T_pM \leftrightarrow T_pV \leftrightarrow V$ to obtain a canonical identification of each tangent space to M with V. For example, since $GL(n,\mathbb{R})$ is an open submanifold of the \mathbb{R} -vector space $M(n,\mathbb{R})$, see [Exercise Sheet 2, Exercise 3], we can identify its tangent space at each point $X \in GL(n,\mathbb{R})$ with the full space of matrices $M(n,\mathbb{R})$.

Remark. For those familiar with categorical language, let us put Exercise 2 into context. The category \mathbf{Man}^{∞}_* of pointed smooth manifolds described in the previous remark has the category $\mathbf{Vect}_{\mathbb{R},*}$ of pointed vector spaces as a subcategory (but not as a full subcategory, since only linear maps between pointed vector spaces are considered). Therefore, the tangent space yields a functor $T: \mathbf{Vect}_{\mathbb{R},*} \to \mathbf{Vect}_{\mathbb{R}}$ by restricting to this subcategory. But there is also another natural functor between these two categories, namely, the forgetful functor $U: \mathbf{Vect}_{\mathbb{R},*} \to \mathbf{Vect}_{\mathbb{R}}$ which to a pointed vector space (V, a) associates the underlying vector space V, and to a linear map $L: (V, a) \to (W, b)$ (i.e., a linear map with La = b) associates the linear map $L: V \to W$. In the preceding exercise, we showed that η_{\bullet} is a natural transformation from U to T (by showing that the given diagram commutes), and in fact that it is a natural isomorphism (by showing that each individual map $\eta_{(V,a)}: U(V,a) \to T(V,a)$ is an isomorphism).

Exercise 3 (The tangent space to a product manifold): Let M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$. For each $j \in \{1, \ldots, k\}$, let

$$\pi_i \colon M_1 \times \ldots \times M_k \to M_i$$

be the projection onto the j-th factor M_j . Show that for any point $p = (p_1, \ldots, p_k) \in M_1 \times \ldots \times M_k$, the map

$$\alpha: T_p(M_1 \times \ldots \times M_k) \longrightarrow T_{p_1} M_1 \oplus \ldots \oplus T_{p_k} M_k$$

 $v \mapsto (d(\pi_1)_p(v), \ldots, d(\pi_k)_p(v))$

is an \mathbb{R} -linear isomorphism.

Solution: The map α is \mathbb{R} -linear: this follows readily from the fact that every component $d(\pi_j)_p$ is \mathbb{R} -linear. Note also that both vector spaces have dimension $\sum_i \dim M_i$. Thus, to show that α is an isomorphism, it suffices to prove that it is surjective. We will achieve this by constructing a right-inverse to α .

To this end, for each $1 \le i \le k$, define the map

$$\iota_j \colon M_j \to M_1 \times \ldots \times M_k$$

 $m_j \mapsto (p_1, \ldots, p_{j-1}, m_j, p_{j+1}, \ldots, p_k).$

By part (b) of [Exercise Sheet 3, Exercise 4] we infer that ι_j is smooth, because $\pi_{j'} \circ \iota_j$ is clearly either constant or the identity (so in particular smooth) for all $1 \leq j' \leq k$, with $\iota_j(p_j) = p$. Therefore, we obtain a map

$$d(\iota_j)_{p_j} \colon T_{p_j} M_j \to T_p(M_1 \times \ldots \times M_k).$$

We now define the following map:

$$\beta \colon T_{p_1} M_1 \oplus \ldots \oplus T_{p_k} M_k \to T_p \big(M_1 \times \ldots \times M_k \big)$$
$$(v_1, \ldots, v_k) \mapsto d(\iota_1)_{p_1} (v_1) + \ldots + d(\iota_k)_{p_k} (v_k).$$

We will show that β is a right-inverse for α . To this end, let

$$(v_1,\ldots,v_k)\in T_{p_1}M_1\oplus\ldots\oplus T_{p_k}M_k.$$

Then

$$(\alpha \circ \beta)(v_1, \dots, v_k) = \alpha \left(\sum_j d(\iota_j)_{p_j}(v_j) \right) = \sum_j \alpha \left(d(\iota_j)_{p_j}(v_j) \right). \tag{*}$$

Now, let $1 \le i, j \le k$ be arbitrary. Note that

$$d(\pi_i)_p \left(d(\iota_i)_{p_i} (v_i) \right) = d(\pi_i \circ \iota_i)_{p_i} (v_i) = \delta_{ij} v_j, \tag{**}$$

because if $i \neq j$, then $\pi_i \circ \iota_j$ is constant and thus has 0 differential by Lemma 3.5(a), while if i = j, then $\pi_i \circ \iota_j = \mathrm{Id}_{M_j}$ and thus its differential is the identity by Exercise 1(c). By (*) and (**) we obtain

$$(\alpha \circ \beta)(v_1, \dots, v_k) = \sum_{j} (\delta_{1j}v_1, \dots, \delta_{kj}v_k) = (v_1, \dots, v_k),$$

and since (v_1, \ldots, v_k) was arbitrary, we conclude that $\alpha \circ \beta = \text{Id}$. It follows that α is surjective, and hence an isomorphism, as explained above.

Remark. Since the isomorphism α in Exercise 3 is canonically defined, independently of any choice of coordinates, we can consider it as a canonical identification, and we will always do so. Thus, for example, we identify $T_{(p,q)}(M \times N)$ with $T_pM \oplus T_qN$, and treat both T_pM and T_qN as subspaces of $T_{(p,q)}(M \times N)$.

Exercise 4 (to be submitted): Consider the inclusion map $\iota: \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$, where both \mathbb{S}^2 and \mathbb{R}^3 are endowed with the standard smooth structure. Let $p = (p^1, p^2, p^3) \in \mathbb{S}^2$ with $p^3 > 0$. What is the image of the differential $d\iota_p: T_p\mathbb{S}^2 \to T_p\mathbb{R}^3$?

Solution: Observe that the given point $p \in \mathbb{S}^2$ is contained in the domain of the smooth chart (U_3^+, φ_3^+) for \mathbb{S}^2 , where

$$U_3^+ = \{(x^1, x^2, x^3) \in \mathbb{R}^3 \mid x^3 > 0\}$$

and

$$\varphi_3^+: U_3^+ \cap \mathbb{S}^2 \to \mathbb{B}^2, \ (x^1, x^2, x^3) \mapsto (x^1, x^2)$$

with coordinate functions φ^1 and φ^2 (defined in the obvious manner). Recall also that the inverse of φ_3^+ is the map

$$(\varphi_3^+)^{-1} \colon \mathbb{B}^2 \to U_3^+ \cap \mathbb{S}^2, \ (u^1, u^2) \mapsto \left(u^1, u^2, \sqrt{1 - (u^1)^2 - (u^2)^2}\right).$$

Therefore, the coordinate representation $\hat{\iota}$ of $\iota \colon \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ with respect to the charts (U_3^+, φ_3^+) and $(\mathbb{R}^3, \mathrm{Id}_{\mathbb{R}^3})$ is the function

$$\widehat{\iota}(u^1, u^2) = \left(\operatorname{Id}_{\mathbb{R}^3} \circ \iota \circ (\varphi_3^+)^{-1} \right) (u^1, u^2) = \left(u^1, u^2, \sqrt{1 - (u^1)^2 - (u^2)^2} \right),$$

and the coordinate representation \widehat{p} of $p \in \mathbb{S}^2$ is the point $\widehat{p} = \varphi_3^+(p) = (p^1, p^2) \in \mathbb{B}^2$. Since the Jacobian matrix of $\widehat{\iota}$, given by

$$J(u^{1}, u^{2}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{u^{1}}{\sqrt{1 - (u^{1})^{2} - (u^{2})^{2}}} & -\frac{u^{2}}{\sqrt{1 - (u^{1})^{2} - (u^{2})^{2}}} \end{pmatrix},$$

represents $d\iota_p\colon T_p\mathbb{S}^2\to T_p\mathbb{R}^3$ in the coordinate bases

$$\left\{ \frac{\partial}{\partial \varphi^1} \bigg|_p, \ \frac{\partial}{\partial \varphi^2} \bigg|_p \right\} \subseteq T_p \mathbb{S}^2 \quad \text{ and } \quad \left\{ \frac{\partial}{\partial x^1} \bigg|_p, \ \frac{\partial}{\partial x^2} \bigg|_p, \ \frac{\partial}{\partial x^3} \bigg|_p \right\} \subseteq T_p \mathbb{R}^3,$$

we deduce that

$$d\iota_{p}\left(\frac{\partial}{\partial\varphi^{1}}\Big|_{p}\right) = 1 \cdot \frac{\partial}{\partial x^{1}}\Big|_{p} + 0 \cdot \frac{\partial}{\partial x^{2}}\Big|_{p} - \frac{p^{1}}{\sqrt{1 - (p^{1})^{2} + (p^{2})^{2}}} \cdot \frac{\partial}{\partial x^{3}}\Big|_{p}$$
$$= \frac{\partial}{\partial x^{1}}\Big|_{p} - \frac{p^{1}}{p^{3}} \frac{\partial}{\partial x^{3}}\Big|_{p}$$

and

$$d\iota_{p}\left(\frac{\partial}{\partial\varphi^{2}}\Big|_{p}\right) = 0 \cdot \frac{\partial}{\partial x^{1}}\Big|_{p} + 1 \cdot \frac{\partial}{\partial x^{2}}\Big|_{p} - \frac{p^{2}}{\sqrt{1 - (p^{1})^{2} + (p^{2})^{2}}} \cdot \frac{\partial}{\partial x^{3}}\Big|_{p}$$
$$= \frac{\partial}{\partial x^{2}}\Big|_{p} - \frac{p^{2}}{p^{3}} \frac{\partial}{\partial x^{3}}\Big|_{p}.$$

Thus, the image of $d\iota_p$ is the \mathbb{R} -vector space spanned by the above two vectors, which can be identified with the vectors $(1,0,-\frac{p^1}{p^3})$ and $(0,1,-\frac{p^2}{p^3})$, respectively, in \mathbb{R}^3 . It is now easy to check that this 2-dimensional \mathbb{R} -vector space is the orthogonal complement of $\langle p \rangle$; namely,

$$d\iota_p\left(T_p\mathbb{S}^2\right) = \langle p \rangle^{\perp} \cong \left\{v \in \mathbb{R}^3 \mid \langle v, p \rangle = 0\right\}.$$

Exercise 5: Prove the following assertions:

- (a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold. If $p \in M$, then for any $v \in T_pM$ there exists a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$.
- (b) The velocity of a composite curve: If $F: M \to N$ is a smooth map and if $\gamma: J \to M$ is a smooth curve, then for any $t_0 \in J$, the velocity at $t = t_0$ of the composite curve $F \circ \gamma: J \to N$ is given by

$$(F \circ \gamma)'(t_0) = dF(\gamma'(t_0)).$$

(c) Computing the differential using a velocity vector: If $F: M \to N$ is a smooth map, $p \in M$ and $v \in T_pM$, then

$$dF_p(v) = (F \circ \gamma)'(0)$$

for any smooth curve $\gamma: J \to M$ such that $0 \in J$, $\gamma(0) = p$ and $\gamma'(0) = v$.

Solution:

(a) Let (U,φ) be a smooth coordinate chart for M centered at $p \in M$ with components functions (x^1,\ldots,x^n) , and write $v=v^i\frac{\partial}{\partial x^i}\big|_p$ in terms of the coordinate basis. For sufficiently small $\varepsilon>0$, let $\gamma\colon (-\varepsilon,\varepsilon)\to U$ be the curve whose coordinate representation is

$$\gamma(t) = (tv^1, \dots, tv^n).$$

This is a smooth curve with $\gamma(0) = p$ and

$$\gamma'(0) = \frac{d\gamma^i}{dt}(0)\frac{\partial}{\partial x^i}\bigg|_p = v^i\frac{\partial}{\partial x^i}\bigg|_p = v.$$

(b) By definition and by Exercise 1(b) we obtain

$$(F \circ \gamma)'(t_0) = d(F \circ \gamma) \left(\frac{d}{dt} \Big|_{t_0} \right) = (dF \circ d\gamma) \left(\frac{d}{dt} \Big|_{t_0} \right)$$
$$= dF \left(d\gamma \left(\frac{d}{dt} \Big|_{t_0} \right) \right) = dF (\gamma'(t_0)).$$

(c) Follows immediately from (a) and (b).