

Differential Geometry II - Smooth Manifolds

Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 4

Exercise 1: Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$. Prove the following assertions:

- (a) The map $dF_p: T_pM \to T_{F(p)}N$ is \mathbb{R} -linear.
- (b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_pM \to T_{(G \circ F)(p)}P.$
- (c) $d(\operatorname{Id}_M)_p = \operatorname{Id}_{T_pM} : T_pM \to T_pM$.
- (d) If F is a diffeomorphism, then $dF_p: T_pM \to T_{F(p)}N$ is an isomorphism, and it holds that $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Exercise 2 (The tangent space to a vector space):

Let V be a finite-dimensional \mathbb{R} -vector space with its standard smooth manifold structure. Fix a point $a \in V$.

(a) For each $v \in V$ define a map

$$D_v|_a : C^{\infty}(V) \longrightarrow \mathbb{R}, \ f \mapsto \frac{d}{dt}|_{t=0} f(a+tv).$$

Show that $D_v|_a$ is a derivation at a.

(b) Show that the map

$$V \to T_a V, \ v \mapsto D_v \big|_a$$

is a canonical isomorphism, such that for any linear map $L\colon V\to W$ the following diagram commutes:

$$V \xrightarrow{\cong} T_a V$$

$$\downarrow \downarrow dL_a$$

$$W \xrightarrow{\cong} T_{L_a} W.$$

Exercise 3 (The tangent space to a product manifold):

Let M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$. For each $j \in \{1, \ldots, k\}$, let

$$\pi_j \colon M_1 \times \ldots \times M_k \to M_j$$

be the projection onto the j-th factor M_j . Show that for any point $p = (p_1, \ldots, p_k) \in M_1 \times \ldots \times M_k$, the map

$$\alpha : T_p(M_1 \times \ldots \times M_k) \longrightarrow T_{p_1} M_1 \oplus \ldots \oplus T_{p_k} M_k$$

$$v \mapsto (d(\pi_1)_p(v), \ldots, d(\pi_k)_p(v))$$

is an \mathbb{R} -linear isomorphism.

Exercise 4 (to be submitted by Thursday, 09.10.2025, 16:00):

Consider the inclusion map $\iota \colon \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$, where both \mathbb{S}^2 and \mathbb{R}^3 are endowed with the standard smooth structure. Let $p = (p^1, p^2, p^3) \in \mathbb{S}^2$ with $p^3 > 0$. What is the image of the differential $d\iota_p \colon T_p\mathbb{S}^2 \to T_p\mathbb{R}^3$?

Exercise 5:

Prove the following assertions:

- (a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold. If $p \in M$, then for any $v \in T_pM$ there exists a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$.
- (b) The velocity of a composite curve: If $F: M \to N$ is a smooth map and if $\gamma: J \to M$ is a smooth curve, then for any $t_0 \in J$, the velocity at $t = t_0$ of the composite curve $F \circ \gamma: J \to N$ is given by

$$(F \circ \gamma)'(t_0) = dF(\gamma'(t_0)).$$

(c) Computing the differential using a velocity vector: If $F: M \to N$ is a smooth map, $p \in M$ and $v \in T_pM$, then

$$dF_p(v) = (F \circ \gamma)'(0)$$

for any smooth curve $\gamma: J \to M$ such that $0 \in J$, $\gamma(0) = p$ and $\gamma'(0) = v$.