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Exercise Sheet 3 – Solutions

Exercise 1 (Equivalent characterizations of smoothness): LetM and N be smooth man-
ifolds and let F : M → N be a map. Show that F is smooth if and only if either of the
following conditions is satisfied:

(a) For every p ∈M there exist smooth charts (U,φ) containing p and (V, ψ) containing
F (p) such that U ∩F−1(V ) is open inM and the composite map ψ◦F ◦φ−1 is smooth
from φ

(
U ∩ F−1(V )

)
to ψ(V ).

(b) F is continuous and there exist smooth atlases
{
(Uα, φα)

}
and

{
(Vβ, ψβ)

}
for M and

N , respectively, such that for each α and β, ψβ ◦ F ◦ φ−1
α is a smooth map from

φα
(
Uα ∩ F−1(Vβ)

)
to ψβ(Vβ).

Solution:

(a) We prove the two directions:

(⇒) Suppose F is smooth and let p ∈ M . Then there exist smooth charts (U,φ)
containing p and (V, ψ) containing F (p) such that F (U) ⊆ V and such that
ψ ◦F ◦φ−1 is smooth from φ(U) to ψ(V ). Then U ∩F−1(V ) = U , and thus the
charts (U,φ) and (V, ψ) satisfy the conditions specified in (a).

(⇐) Assume that (a) holds and let p ∈ M . Let (U,φ) resp. (V, ψ) be the charts
given by (a). Then, setting U ′ := U ∩ F−1(V ) and φ′ := φ|U ′ , we infer that
(U ′, φ′) is a smooth chart containing p such that F (U ′) ⊆ V and such that
ψ ◦ F ◦ (φ′)−1 : φ′(U ′) → ψ(V ) is smooth.

(b) We prove the two directions:

(⇒) Suppose that F is smooth. By Proposition 2.5, F is continuous. Now, let
(U,φ) and (V, ψ) be any smooth chart for M and N , respectively. We would

like to show that the map F̂ := ψ ◦ F ◦ φ−1 is smooth from φ
(
U ∩ F−1(V )

)
to

ψ(V ). If U ∩ F−1(V ) is empty, then there is nothing to prove. Otherwise, let
p ∈ U ∩ F−1(V ) be arbitrary. By smoothness of F , there exist charts (W, η)
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containing p and (Z, θ) containing F (p) such that F (W ) ⊆ Z and such that
θ ◦ F ◦ η−1 is smooth from η(W ) to θ(Z). In particular, we have

F̂ = ψ ◦ (θ−1 ◦ θ) ◦ F ◦ (η−1 ◦ η) ◦ φ−1 = (ψ ◦ θ−1) ◦ (θ ◦ F ◦ η−1) ◦ (η ◦ φ−1)

on the open neighborhood φ
(
U ∩ W ∩ F−1(V )

)
containing φ(p). As this is

a composition of smooth functions between open subsets of Euclidean spaces,
it follows that the function F̂ is smooth in a neighborhood of φ(p). As p ∈
U ∩ F−1(V ) was arbitrary, we conclude that F̂ is smooth. Hence, the maximal
smooth atlases of M and N satisfy (b).

(⇐) Let p ∈ M . Let (Uα, φα) be a smooth chart containing p and let (Vβ, ψβ) be
a smooth chart containing F (p). By hypothesis, ψβ ◦ F ◦ φ−1

α is smooth from
φα

(
Uα∩F−1(Vβ)

)
to ψβ(Vβ). As p ∈M was arbitrary and since F is continuous,

we infer that (a) is satisfied, and thus F is smooth.

Exercise 2 (Smoothness is a local property): Let M and N be smooth manifolds and let
F : M → N be a map. Prove the following assertions:

(a) If every point p ∈ M has a neighborhood U such that F |U is smooth, then F is
smooth.

(b) If F is smooth, then its restriction to every open subset of M is smooth.

Solution: Recall that (see Example 1.10 (4)) any open subset U of M is considered as
an open submanifold of M , endowed with the smooth structure AU determined by the
smooth atlas

AU :=
{
(W, θ) | (W, θ) is a smooth chart for M such that W ⊆ U

}
.

(a) Let p ∈ M . By hypothesis there exists an open neighborhood U of p in M such
that F |U is smooth. By definition of smoothness, there are smooth charts (W, θ) ∈ AU

containing p and (V, ψ) containing F (p) such that F |U(W ) ⊆ V and ψ ◦ (F |U) ◦ θ−1 is
smooth from θ(W ) to ψ(V ). But then (W, θ) is also a smooth chart for M containing p
(with W ⊆ U) and F (W ) = F |U(W ) ⊆ V . Since we also have

ψ ◦ F ◦ θ−1 = ψ ◦ (F |U) ◦ θ−1

on θ(W ), we conclude that the former is smooth. As p ∈ M was arbitrary, we infer that
F is smooth.

(b) Let U be an open subset of M and let p ∈ U . By smoothness of F there exist smooth
charts (W, θ) for M containing p and (V, ψ) for N containing F (p) such that F (W ) ⊆ V
and such that ψ ◦ F ◦ θ−1 is smooth from θ(W ) to ψ(V ). Now, set W ′ := W ∩ U and
θ′ := θ|W∩U . Then (W ′, θ′) is a smooth chart for U containing p, and we also have
F |U(W ′) ⊆ F (W ) ⊆ V and

ψ ◦ (F |U) ◦ (θ′)−1 = (ψ ◦ F ◦ θ−1)|θ′(W ′).

Hence, ψ ◦ (F |U) ◦ (θ′)−1 is smooth from θ′(W ′) to ψ(V ). As p ∈ U was arbitrary, we
conclude that F |U is smooth.
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Exercise 3: Let M , N and P be smooth manifolds. Prove the following assertions:

(a) If c : M → N is a constant map, then c is smooth.

(b) The identity map IdM : M →M is smooth.

(c) If U ⊆M is an open submanifold, then the inclusion map ι : U ↪→M is smooth.

(d) If F : M → N and G : N → P are smooth maps, then the composite G ◦ F : M → P
is also smooth.

Solution:

(a) Since c is constant, there exists a point q ∈ N such that c(x) = q for all x ∈ M .
Fix p ∈ M , pick smooth charts (U,φ) containing p and (V, ψ) containing q = c(p), and
observe that {q} = c(U) ⊆ V . Since the composite map ψ ◦ c ◦ φ−1 : φ(U) → ψ(V ) is
clearly a constant map (with value ψ(q)) between open subsets of Euclidean spaces, it is
certainly smooth. Therefore, the given constant map c is smooth.

(b) The identity map IdM : M → M of M clearly has an identity map between open
subsets of Euclidean spaces as a coordinate representation, so it is smooth.

(c) Fix p ∈ U ⊆ M . Recall that a smooth chart for U containing p is simply a smooth
chart (V, ψ) for M such that p ∈ V ⊆ U , and clearly it holds that ι(V ) = V . Since the
coordinate representation of ι with respect to such a smooth chart is the identity map
Idψ(V ) : ψ(V ) → ψ(V ), we deduce that ι : U ↪→M is smooth.

(d) Fix p ∈M . Since G is smooth, there exist smooth charts (V, ψ) containing F (p) and
(W, θ) containing G(F (p)) = (G ◦ F )(p) such that G(V ) ⊆ W and the composite map

θ ◦G ◦ ψ−1 : ψ(V ) → θ(W )

is smooth. Since F is smooth, it is continuous by Proposition 2.5, so F−1(V ) is an open
neighborhood of p in M , and thus there exists a smooth chart (U,φ) for M such that
p ∈ U ⊆ F−1(V ). In addition, the composite map

ψ ◦ F ◦ φ−1 : φ(U) → ψ(V )

is smooth by Remark 2.7, and we also have (G ◦F )(U) ⊆ G(V ) ⊆ W . Now, observe that

θ ◦ (G ◦ F ) ◦ φ−1 =
(
θ ◦G ◦ ψ−1

)
◦
(
ψ ◦ F ◦ φ−1

)
: φ(U) → θ(W )

is smooth as a composition of smooth maps between open subsets of Euclidean spaces.
Hence, the composite map G ◦ F : M → P is smooth, as claimed.

Exercise 4: Let M1, . . . ,Mk be smooth manifolds. For each i ∈ {1, . . . , k}, let

πi :
k∏
j=1

Mj →Mi

be the projection onto the i-th factor.
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(a) Show that each πi is smooth.

(b) Let N be a smooth manifold. Show that a map F : N →
∏k

j=1Mj is smooth if and
only if each of the component maps Fi := πi ◦ F : N →Mi is smooth.

Solution:

(a) Let p = (p1, . . . , pk) ∈M1×. . .×Mk =:M and i ∈ {1, . . . , k} be arbitrary. Let (Ui, φi)
be a smooth chart containing i. By the construction in [Exercise Sheet 2, Exercise 3] the
smooth structure ofM is generated by products of smooth charts of the individual factors.
Hence, if for j ̸= i we take some smooth chart (Uj, φj) for Mj containing pj and write
U = U1 × . . .× Uk, resp. φ = φ1 × . . .× φk, then we obtain that (U,φ) is a smooth chart
for M containing p. Note then that πi(U) ⊆ Ui, and thus the coordinate representation
π̂i = φi ◦ πi ◦ φ−1 of πi is a map from φ1(U1) × . . . × φk(Uk) to φi(Ui). Furthermore, it
is straightforward to see that for all (v1, . . . , vk) ∈ φ1(U1) × . . . × φk(Uk) ⊆ Rn (where
n := n1 + . . .+ nk), we have

π̂i(vi) = φi ◦ πi ◦ φ−1(v1, . . . , vk) = vi,

and thus π̂i is the projection to the i-th factor φ1(U1) × · · · × φk(Uk) → φi(Ui). In
particular, it is smooth. As p ∈ M was arbitrary, we conclude that the definition of
smoothness is satisfied by πi; in other words, πi it is smooth, as claimed.

(b) Suppose first that F : N →
∏k

j=1Mj is smooth. Pick 1 ≤ i ≤ k. By (a) we know
that πi is smooth, and by Exercise 3(d) we know that a composition of smooth maps is
smooth. Hence, Fi = πi ◦ F is smooth.

Suppose now that each of the component maps Fi = πi ◦ F is smooth. Let q ∈ N
and set F (q) = (p1, . . . , pk), so that pi = Fi(q). By hypothesis, for every 1 ≤ i ≤ k
there exist smooth charts (Vi, ψi) for N containing q and (Ui, φi) for Mi containing pi
such that Fi(Vi) ⊆ Ui and such that φi ◦ Fi ◦ ψ−1

i is smooth from ψi(Vi) to φi(Ui). Set
V := V1 ∩ . . . ∩ Vk and observe that this is an open neighborhood of q. Now, fix any
1 ≤ i ≤ k and set ψ = ψi|V . Note that Fj(V ) ⊆ Uj for all 1 ≤ j ≤ k, so by Remark 2.7
we infer that φj ◦ Fj ◦ ψ−1 is smooth from ψ(V ) to φj(Uj) for all j. Moreover, we have

F (V ) ⊆ F1(V1)× . . .× Fk(Vk) ⊆ U1 × . . .× Uk.

In summary, (V, ψ) is a smooth chart for N containing q and (U1× . . .×Uk, φ1× . . .×φk)
is a smooth chart for M1 × . . . ×Mk containing F (q) such that F (V ) ⊆ U1 × . . . × Uk,
and the coordinate representation

(φ1 × . . .× φk) ◦ F ◦ ψ−1 = (φ1 ◦ F1 ◦ ψ−1)× . . .× (φk ◦ Fk ◦ ψ−1)

is smooth from ψ(V ) to φ1(U1)× . . .×φk(Uk), because all of its components are smooth.
As q ∈ N was arbitrary, we conclude that F is smooth.

Exercise 5 (to be submitted):

(a) Consider the canonical inclusion ι : S1 ↪→ R2 and the graph coordinates{
(U±

i ∩ S1, φ±
i )
}2

i=1

for unit circle S1 ⊂ R2. Compute all possible coordinate representations of ι and
deduce that the differential dιw is injective for any w ∈ S1.
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(b) Show that RP1 ∼= S1 as smooth manifolds.

[Hint: To define an appropriate map from RP1 to S1, it might be helpful to use the
identifications R2 ∼= C and S1 ∼= {z ∈ C | |z| = 1}, and to check its smoothness,
Exercise A.6 might be useful.]

Solution:

(a) Denote by e1, e2 the standard basis of R2. It is then straightforward to verify that the
coordinate representation ι ◦ (φ±

i )
−1 of ι is given by

ι ◦ (φ±
i )

−1 : (−1, 1) → R2

t 7→ t e3−i ±
√
1− t2 ei.

The differential at a given t ∈ (−1, 1) is hence given by

d
(
ι ◦ (φ±

i )
−1
)
t
: R → R2

x 7→ x

(
e3−i ∓

2t√
1− t2

ei

)
,

which is clearly injective. By the functoriality of the differential, we have

d
(
ι ◦ (φ±

i

)−1)
t
= dι(φ±

i )−1(t) ◦ d
(
(φ±

i )
−1
)
t
,

and d
(
(φ±

i )
−1
)
t
is an invertible linear map (again by functoriality). Thus, dι(φ±

i )−1(t) is

injective for any t ∈ (−1, 1) and any choice of chart, so dιw is injective for any w ∈ S1.

(b) We construct a map from RP1 to S1 which at the end should be the desired diffeo-
morphism. To this end, we first identify C with R2, and thus R2 \ {0} = C×, and S1 with
{z ∈ C | |z| = 1}. Note next that the map

F : C× → S1

z 7→
(
z

|z|

)2

is smooth and invariant under scaling by a non-zero real number. Therefore, we have an
induced map

f : RP1 → S1

such that f ◦ π = F , where π : R2 \ {0} → RP1 is the quotient map. Hence, f is smooth
by Exercise A.6.

To prove that f is a diffeomorphism, we manually construct an inverse and show that
it is smooth. Since for f we take the square of a complex number, we want to take the
square root to construct its inverse. We thus switch to exponential notation, and define

g : S1 → RP1

eit 7→ [eit/2].

It is straightforward to check that g is well-defined set-theoretically, because adding 2πn
to t only changes eit/2 up to a sign.
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Let us now show that g is smooth by computing the appropriate coordinate represen-
tations. We have

φ1 ◦ g ◦ φ±
1 : (−1, 1) → R

t 7→ sin(± arcsin(t)/2)

cos(± arcsin(t)/2)

and

φ2 ◦ g ◦ φ±
2 : (−1, 1) → R

t 7→ cos(± arccos(t)/2)

sin(± arccos(t)/2)
.

These are smooth since they are fractions of compositions of smooth functions, with
non-zero denominator. Hence, g is smooth.

It remains to check that f and g are mutually inverse. To this end, we compute that

(f ◦ g)(eit) = f
(
[eit/2]

)
= F (eit/2) = (eit/2)2 = eit

and
(g ◦ f)([eit]) = g(e2it) = [eit].

This concludes the solution.

Remark : Later in the course, the more principal approach is to show that f is smooth,
bijective and a local diffeomorphism, which – as we will later see – is equivalent to being
a diffeomorphism. Like this, we avoid having to construct an inverse by hand. This is
how we would do it:

Let us start by proving that f is bijective.

• Surjectivity: Let w ∈ S1 be arbitrary. Then there exists z ∈ C with z2 = w. In
particular, we have |z| = 1, and thus f([z]) = F (z) = w.

• Injectivity: Suppose that f([z]) = f([z′]) for some [z], [z′] ∈ RP1. Then

(z/|z|)2 = (z′/|z′|)2 =⇒ z/|z| = ±z′/|z′| =⇒ [z] = [z′].

To conclude, we show that it is a local diffeomorphism, which is equivalent to proving
that df[z] is an isomorphism for all [z] ∈ RP1. As we work in dimension 1, this amounts
to showing that df[z] ̸= 0 for all [z] ∈ RP1. Now, if ι : S1 ↪→ C denotes the canonical
inclusion, then we have

G := ι ◦ F = ι ◦ f ◦ π =⇒ dGz = dιf([z]) ◦ df[z] ◦ dπz

for any z ∈ C×. As dιw is injective for any w ∈ S1 by part (a), it suffices to prove that
dGz ̸= 0 to obtain that df[z] ̸= 0. Note that, under our identifications, G = ι ◦ f is the
function

G : R2 \ {0} → R2

(x, y) 7→
(
(x+ iy)/

√
x2 + y2

)2

=

(
x2 − y2

x2 + y2
,

2xy

x2 + y2

)
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whose Jacobian is thus given by

dG(x,y) =


4xy2

(x2 + y2)2
−4xy2

(x2 + y2)2

2y(y2 − x2)

x2 + y2
2x(x2 − y2)

x2 + y2


This is clearly non-zero for any (x, y) ̸= (0, 0). Hence, f is a diffeomorphism; in other
words, RP1 ∼= S1.
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