

Differential Geometry II - Smooth Manifolds Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 2 – Solutions

Exercise 1 (Finite-dimensional vector spaces): Let V be an \mathbb{R} -vector space of dimension n. Recall that any norm on V determines a topology, which is independent of the choice of norm. Show that V has a natural smooth manifold structure as follows:

(a) Pick a basis E_1, \ldots, E_n for V and consider the map

$$E \colon \mathbb{R}^n \to V, \ (x^1, \dots, x^n) \mapsto \sum_{i=1}^n x^i E_i.$$

Show that (V, E^{-1}) is a chart for V; in particular, with the topology defined above, V is thus a topological n-manifold.

(b) Given a different basis $\widetilde{E}_1, \ldots, \widetilde{E}_n$ for V, show that the charts (V, E^{-1}) and (V, \widetilde{E}^{-1}) are smoothly compatible.

The collection of all such charts for V defines a smooth structure, called the standard smooth structure on V.

Solution: Denote by $\| \bullet \|_V : V \to \mathbb{R}_{\geq 0}$ the chosen norm on V, and by $\| \bullet \|_{\mathbb{R}^n}$ the standard Euclidean norm on \mathbb{R}^n .

(a) It suffices to show that E is a homeomorphism. First, observe that E is bijective. Now, note that the map $\|\cdot\|': \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ given by $\|x\|':=\|E(x)\|_V$ is a norm on \mathbb{R}^n . As all norms on \mathbb{R}^n are equivalent, there exists a constant c>1 such that

$$\frac{1}{c}||x||_{\mathbb{R}^n} \le ||x||' \le c||x||_{\mathbb{R}^n} \quad \text{for all } x \in \mathbb{R}^n.$$

In particular, both E and E^{-1} are Lipschitz-continuous, and thus E is a homeomorphism.

(b) There exists an invertible matrix $A = (A_i^j)_{1 \leq i,j \leq n} \in GL(n,\mathbb{R})$ such that $E_i = \sum_j A_i^j \widetilde{E}_j$ for each i. Thus, the transition map $\widetilde{E}^{-1} \circ E$ is given by

$$(\widetilde{E}^{-1} \circ E)(x) = \widetilde{E}^{-1} \left(\sum_{i} x^{i} E_{i} \right) = \sum_{i} x^{i} \widetilde{E}^{-1}(E_{i}) = \sum_{i} x^{i} A_{i}^{j}.$$

Hence, the transition map is an invertible linear map, and thus a diffeomorphism (the partial derivatives of the first order are given by constant maps corresponding to the entries of A, and the partial derivatives of higher order vanish).

Exercise 2: Prove the following assertions:

- (a) The space $M(m \times n, \mathbb{R})$ of $m \times n$ matrices with real entries has a natural smooth manifold structure.
- (b) The general linear group $GL(n, \mathbb{R})$ (i.e., the group of invertible $n \times n$ matrices with real entries) has a natural smooth manifold structure.
- (c) The subset $M_m(m \times n, \mathbb{R})$ of $M(m \times n, \mathbb{R})$ of matrices of rank m, where m < n has a natural smooth manifold structure. Similarly for $M_n(m \times n, \mathbb{R})$ when n < m.
- (d) The space $\mathcal{L}(V, W)$ of \mathbb{R} -linear maps from V to W, where V and W are two finite-dimensional \mathbb{R} -vector spaces, has a natural smooth manifold structure.

What is the dimension of each of the above smooth manifolds?

Solution:

(a) The set $M(m \times n, \mathbb{R})$ is an \mathbb{R} -vector space of dimension mn, and thus by *Exercise* 1 it has a natural smooth structure, given by identifying it with \mathbb{R}^{mn} . We have

$$\dim M(m \times n, \mathbb{R}) = mn.$$

(b) Let det: $M(n \times n, \mathbb{R}) \to \mathbb{R}$ be the determinant function. Note that it is continuous, and hence $GL(n,\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ is an open subset of $M(n \times n, \mathbb{R})$. As the latter has a natural smooth manifold structure by (a), the open subset $GL(n,\mathbb{R}) \subseteq M(n \times n,\mathbb{R})$ inherits a natural smooth manifold structure as well. We have

$$\dim \operatorname{GL}(n,\mathbb{R}) = n^2.$$

(c) By linear algebra we know that an $m \times n$ -matrix with m < n has full rank if and only if it has an invertible $m \times m$ -submatrix. For a subset $I \subseteq \{1, \ldots, n\}$ of cardinality m and a matrix $A \in M(m \times n, \mathbb{R})$, denote by A_I the $m \times m$ submatrix corresponding to the columns indexed by I. Consider the map

$$\det_{I} : M(m \times n, \mathbb{R}) \to \mathbb{R}$$
$$A \mapsto \det(A_{I})$$

and observe that it is continuous. Thus,

$$M_m(m \times n, \mathbb{R}) = \bigcup_{\substack{I \subseteq \{1, \dots, n\} \\ |I| = m}} \det_{I}^{-1} (\mathbb{R} \setminus \{0\})$$

is an open subset of $M(m \times n, \mathbb{R})$, and hence $M_m(m \times n, \mathbb{R})$ inherits a natural smooth manifold structure. We have

$$\dim M_m(m \times n, \mathbb{R}) = mn.$$

Finally, note that the isomorphism of vector spaces $M(m \times n, \mathbb{R}) \to M(n \times m, \mathbb{R})$ given by transposition preserves the rank. Therefore, $M_n(m \times n, \mathbb{R})$ with n < m is again open in $M(m \times n, \mathbb{R})$, and hence inherits a natural smooth manifold structure.

(d) The set $\mathcal{L}(V, W)$ is naturally an \mathbb{R} -vector space, and hence it has a natural smooth manifold structure by *Exercise* 1. Indeed, fixing bases of V and W, $\mathcal{L}(V, W)$ can be naturally identified with $M(m \times n, \mathbb{R})$, where $m = \dim W$ and $n = \dim V$. We have

$$\dim \mathcal{L}(V, W) = \dim V \cdot \dim W.$$

Exercise 3 (*Product manifolds*): Let M_1, \ldots, M_k be smooth manifolds of dimensions n_1, \ldots, n_k , respectively, where $k \geq 2$. Show that the product space $M_1 \times \ldots \times M_k$ is a smooth manifold of dimension $n_1 + \ldots + n_k$ by constructing a smooth manifold structure on it.

Solution: By [Exercise Sheet 1, Exercise 5] we know that $M_1 \times ... \times M_k$ is a topological manifold of dimension $n_1 + ... + n_k$. As in the solution of [Exercise Sheet 1, Exercise 5], we see that if A_i denotes the smooth structure of M_i for $1 \le i \le k$, then

$$\mathcal{A} := \left\{ (U_1 \times \dots \times U_k, \varphi_1 \times \dots \times \varphi_k) \mid (U_1, \varphi_1) \in \mathcal{A}_1, \dots, (U_k, \varphi_k) \in \mathcal{A}_k \right\}$$

is an atlas for $M_1 \times \ldots \times M_k$. To see that it is smooth, observe that the transition map between two charts $(U_1 \times \cdots \times U_k, \varphi_1 \times \cdots \times \varphi_k)$ and $(V_1 \times \cdots \times V_k, \psi_1 \times \cdots \times \psi_k)$ of \mathcal{A} is given by

$$(\psi_1 \circ \varphi_1^{-1}) \times \ldots \times (\psi_k \circ \varphi_k^{-1}),$$

which is smooth, since each factor is smooth. Therefore, \mathcal{A} is a smooth atlas, and hence determines a smooth structure on $M_1 \times \ldots \times M_k$ by *Proposition 1.8*(a).

Exercise 4 (The real projective n-space): Denote by \mathbb{RP}^n the real projective n-space, where $n \geq 1$. For each $i \in \{0, \ldots, n\}$ consider the chart (U_i, φ_i) for \mathbb{RP}^n described in Appendix A, where

$$U_i := \{ [x_0 : \ldots : x_n] \in \mathbb{RP}^n \mid x_i \neq 0 \} \subseteq \mathbb{RP}^n$$

and

$$\varphi_i \colon U_i \to \mathbb{R}^n$$
$$[x_0 \colon \dots \colon x_n] \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right).$$

Show that the collection

$$\mathcal{A}_{\mathbb{RP}^n} := \left\{ (U_i, \varphi_i) \right\}_{i=0}^n$$

is a smooth atlas for \mathbb{RP}^n .

Solution: Let $0 \le i < j \le n$. One can check that

$$\varphi_j \circ \varphi_i^{-1} \colon \mathbb{R}^n_{x_j \neq 0} \to \mathbb{R}^n_{x_{i+1} \neq 0}$$
$$(x_1, \dots, x_n) \mapsto \frac{1}{x_j} (x_1, \dots, x_i, 1, x_{i+1}, \dots, x_{j-1}, x_{j+1}, \dots, x_n) ,$$

and

$$\varphi_{i} \circ \varphi_{j}^{-1} \colon \mathbb{R}_{x_{i+1} \neq 0}^{n} \to \mathbb{R}_{x_{j} \neq 0}^{n}$$

$$(x_{1}, \dots, x_{n}) \mapsto \frac{1}{x_{i+1}} (x_{1}, \dots, x_{i}, x_{i+2}, \dots, x_{j}, 1, x_{j+1}, \dots, x_{n}),$$

which demonstrates that the transition functions are smooth. This proves the assertion.

Exercise 5 (to be submitted): Consider the *n*-sphere $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$. Denote by $N = (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$ the north pole and by $S = -N = (0, \dots, 0, -1)$ the south pole of \mathbb{S}^n . Define the stereographic projection from the north pole N as follows:

$$\sigma \colon \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n, \quad \sigma(x^1, \dots, x^{n+1}) = \frac{1}{1 - x^{n+1}} (x^1, \dots, x^n).$$

Let $\widetilde{\sigma}(x) = -\sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$; it is called the *stereographic projection from the* south pole.

- (a) For any $x \in \mathbb{S}^n \setminus \{N\}$, show that $\sigma(x) = u$, where (u, 0) is the point where the line through N and x intersects the linear subspace where $x^{n+1} = 0$. Similarly, show that $\widetilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace.
- (b) Show that σ is bijective, and

$$\sigma^{-1}(u^1, \dots, u^n) = \frac{1}{|u|^2 + 1} (2u^1, \dots, 2u^n, |u|^2 - 1).$$

- (c) Verify that the atlas consisting of the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \widetilde{\sigma})$ is a smooth atlas for \mathbb{S}^n , and hence defines a smooth structure on \mathbb{S}^n . (The coordinates defined by σ or $\widetilde{\sigma}$ are called *stereographic coordinates*.)
- (d) Show that the smooth structure determined by the above atlas is the same as the one defined via graph coordinates in $Example \ 1.10(2)$.

Solution: Denote by H the linear subspace of \mathbb{R}^{n+1} where $x^{n+1}=0$, i.e.,

$$H = \{(x^1, \dots, x^{n+1}) \in \mathbb{R}^{n+1} \mid x^{n+1} = 0\},\$$

and observe that H can be identified with \mathbb{R}^n .

(a) The line $\ell_1 \subseteq \mathbb{R}^{n+1}$ through $N = (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$ and $x = (x^1, \dots, x^{n+1}) \in \mathbb{S}^n \setminus \{N\}$ is given by the parametric equation

$$\ell_1: (x^1, \dots, x^{n+1}) + t(-x^1, \dots, -x^n, 1 - x^{n+1}), \ t \in \mathbb{R}$$

and intersects the hyperplane $H:(x^{n+1}=0)$ for $t=-\frac{x^{n+1}}{1-x^{n+1}}$ at the point $(u,0)\in\mathbb{R}^{n+1}$, where

$$u = \left(x^{1} + \frac{x^{n+1}}{1 - x^{n+1}}x^{1}, \dots, x^{n} + \frac{x^{n+1}}{1 - x^{n+1}}x^{n}\right)$$
$$= \left(\frac{x^{1}}{1 - x^{n+1}}, \dots, \frac{x^{n}}{1 - x^{n+1}}\right) = \sigma(x) \in \mathbb{R}^{n}.$$

Similarly, we see that

$$\widetilde{\sigma}(x) = -\sigma(-x) = -\left(-\frac{x^1}{1+x^{n+1}}, \dots, -\frac{x^n}{1+x^{n+1}}\right)$$

$$= \left(\frac{x^1}{1+x^{n+1}}, \dots, \frac{x^n}{1+x^{n+1}}\right)$$

is the point where the line $\ell_2 \subseteq \mathbb{R}^{n+1}$ through S and x intersects the hyperplane H.

(b) Pick a point $u = (u^1, \dots, u^n) \in \mathbb{R}^n$. The line $\ell \subseteq \mathbb{R}^{n+1}$ through $(u, 0) \in \mathbb{R}^{n+1}$ and $N = (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$ is given by the parametric equation

$$\ell: (u^1, \dots, u^n, 0) + t(-u^1, \dots, -u^n, 1), \ t \in \mathbb{R}$$

and intersects the *n*-sphere \mathbb{S}^n at points which satisfy the equation

$$|u|^2(1-t)^2 + t^2 = 1,$$

where $|u|^2 = \sum_{i=1}^n (u^i)^2$. It is now easy to check that the above equation has two solutions: t = 1, which corresponds to the point $N \in \mathbb{S}^n$, and $t = \frac{|u|^2 - 1}{|u|^2 + 1} \neq 1$, which corresponds to the point

$$x = \left(\frac{2u^1}{|u|^2 + 1}, \dots, \frac{2u^n}{|u|^2 + 1}, \frac{|u|^2 - 1}{|u|^2 + 1}\right) \in \mathbb{S}^n.$$

Therefore, the map

$$\sigma \colon \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n, \quad (x^1, \dots, x^{n+1}) \mapsto \frac{1}{1 - x^{n+1}} (x^1, \dots, x^n)$$

is bijective, and its inverse $\sigma^{-1} \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ is given by the formula

$$(u^1, \dots, u^n) \mapsto \frac{1}{|u|^2 + 1} (2u^1, \dots, 2u^n, |u|^2 - 1).$$

(c) It is straightforward to check that

$$(\widetilde{\sigma} \circ \sigma^{-1})(u^1, \dots, u^n) = \frac{1}{|u|^2}(u^1, \dots, u^n), \ (u^1, \dots, u^n) \in \mathbb{R}^n \setminus \{(0, \dots, 0)\}$$

and that its inverse $\sigma \circ \widetilde{\sigma}^{-1}$ is also given by the same formula, namely,

$$(\sigma \circ \widetilde{\sigma}^{-1})(u^1, \dots, u^n) = \frac{1}{|u|^2}(u^1, \dots, u^n), \ (u^1, \dots, u^n) \in \mathbb{R}^n \setminus \{(0, \dots, 0)\}.$$

Since both $\widetilde{\sigma} \circ \sigma^{-1}$ and $\sigma \circ \widetilde{\sigma}^{-1}$ are clearly smooth, the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \widetilde{\sigma})$ for \mathbb{S}^n are smoothly compatible, and since their domains clearly cover \mathbb{S}^n , they comprise a smooth atlas for \mathbb{S}^n , which determines a smooth structure on \mathbb{S}^n by *Proposition 1.8*(a).

(d) According to Proposition 1.8(b), to prove the claim, we have to check that the graph coordinates $(U_i^{\pm} \cap \mathbb{S}^n, \varphi_i^{\pm})$, where

$$\varphi_i^{\pm} : U_i^{\pm} \cap \mathbb{S}^n \to \mathbb{B}^n, \ (x^1, \dots, x^{n+1}) \mapsto (x^1, \dots, \widehat{x^i}, \dots, x^{n+1})$$

with inverse

$$(\varphi_i^{\pm})^{-1} \colon \mathbb{B}^n \to U_i^{\pm} \cap \mathbb{S}^n, \ (u^1, \dots, u^n) \mapsto (u^1, \dots, \pm \sqrt{1 - |u|^2}, \dots, u^n),$$

and the stereographic coordinates $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \widetilde{\sigma})$ are smoothly compatible. For instance, we have

$$\left(\varphi_i^{\pm} \circ \sigma^{-1}\right)(u^1, \dots, u^n) = \left(\frac{2u^1}{1 + |u|^2}, \dots, \frac{2u^i}{1 + |u|^2}, \dots, \frac{2u^n}{1 + |u|^2}, \frac{|u|^2 - 1}{1 + |u|^2}\right)$$

for $1 \le i \le n$, and

$$(\varphi_{n+1}^{\pm} \circ \sigma^{-1})(u^1, \dots, u^n) = \left(\frac{2u^1}{1+|u|^2}, \dots, \frac{2u^i}{1+|u|^2}, \dots, \frac{2u^n}{1+|u|^2}\right),$$

which are clearly smooth in their domain of definition. In a similar fashion one can readily verify that the remaining charts are smoothly compatible; this yields the assertion.