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Exercise Sheet 2 – Solutions

Exercise 1 (Finite-dimensional vector spaces): Let V be an R-vector space of dimension
n. Recall that any norm on V determines a topology, which is independent of the choice
of norm. Show that V has a natural smooth manifold structure as follows:

(a) Pick a basis E1, . . . , En for V and consider the map

E : Rn → V, (x1, . . . , xn) 7→
n∑

i=1

xiEi.

Show that (V,E−1) is a chart for V ; in particular, with the topology defined above,
V is thus a topological n-manifold.

(b) Given a different basis Ẽ1, . . . , Ẽn for V , show that the charts (V,E−1) and (V, Ẽ−1)
are smoothly compatible.

The collection of all such charts for V defines a smooth structure, called the standard
smooth structure on V .

Solution: Denote by ∥•∥V : V → R≥0 the chosen norm on V , and by ∥•∥Rn the standard
Euclidean norm on Rn.

(a) It suffices to show that E is a homeomorphism. First, observe that E is bijective.
Now, note that the map ∥ · ∥′ : Rn → R≥0 given by ∥x∥′ := ∥E(x)∥V is a norm on Rn. As
all norms on Rn are equivalent, there exists a constant c > 1 such that

1

c
∥x∥Rn ≤ ∥x∥′ ≤ c∥x∥Rn for all x ∈ Rn.

In particular, both E and E−1 are Lipschitz-continuous, and thus E is a homeomorphism.

(b) There exists an invertible matrix A = (Aj
i )1≤i,j≤n ∈ GL(n,R) such that Ei =

∑
j A

j
i Ẽj

for each i. Thus, the transition map Ẽ−1 ◦ E is given by(
Ẽ−1 ◦ E

)
(x) = Ẽ−1

(∑
i

xiEi

)
=

∑
i

xiẼ−1(Ei) =
∑
i

xiAj
i .

Hence, the transition map is an invertible linear map, and thus a diffeomorphism (the
partial derivatives of the first order are given by constant maps corresponding to the
entries of A, and the partial derivatives of higher order vanish).
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Exercise 2: Prove the following assertions:

(a) The space M(m × n,R) of m × n matrices with real entries has a natural smooth
manifold structure.

(b) The general linear group GL(n,R) (i.e., the group of invertible n × n matrices with
real entries) has a natural smooth manifold structure.

(c) The subset Mm(m × n,R) of M(m × n,R) of matrices of rank m, where m < n has
a natural smooth manifold structure. Similarly for Mn(m× n,R) when n < m.

(d) The space L(V,W ) of R-linear maps from V to W , where V and W are two finite-
dimensional R-vector spaces, has a natural smooth manifold structure.

What is the dimension of each of the above smooth manifolds?

Solution:

(a) The set M(m × n,R) is an R-vector space of dimension mn, and thus by Exercise 1
it has a natural smooth structure, given by identifying it with Rmn. We have

dimM(m× n,R) = mn.

(b) Let det : M(n × n,R) → R be the determinant function. Note that it is continuous,
and hence GL(n,R) = det−1(R \ {0}) is an open subset of M(n × n,R). As the latter
has a natural smooth manifold structure by (a), the open subset GL(n,R) ⊆M(n×n,R)
inherits a natural smooth manifold structure as well. We have

dimGL(n,R) = n2.

(c) By linear algebra we know that an m × n-matrix with m < n has full rank if and
only if it has an invertible m ×m-submatrix. For a subset I ⊆ {1, . . . , n} of cardinality
m and a matrix A ∈M(m× n,R), denote by AI the m×m submatrix corresponding to
the columns indexed by I. Consider the map

det
I
: M(m× n,R) → R

A 7→ det(AI)

and observe that it is continuous. Thus,

Mm(m× n,R) =
⋃

I⊆{1,...,n}
|I|=m

−1

det
I
(R \ {0})

is an open subset of M(m × n,R), and hence Mm(m × n,R) inherits a natural smooth
manifold structure. We have

dimMm(m× n,R) = mn.
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Finally, note that the isomorphism of vector spaces M(m × n,R) → M(n × m,R)
given by transposition preserves the rank. Therefore, Mn(m× n,R) with n < m is again
open in M(m× n,R), and hence inherits a natural smooth manifold structure.

(d) The set L(V,W ) is naturally an R-vector space, and hence it has a natural smooth
manifold structure by Exercise 1. Indeed, fixing bases of V and W , L(V,W ) can be
naturally identified with M(m× n,R), where m = dimW and n = dimV . We have

dimL(V,W ) = dimV · dimW.

Exercise 3 (Product manifolds): Let M1, . . . ,Mk be smooth manifolds of dimensions
n1, . . . , nk, respectively, where k ≥ 2. Show that the product space M1 × . . . ×Mk is a
smooth manifold of dimension n1 + . . .+ nk by constructing a smooth manifold structure
on it.

Solution: By [Exercise Sheet 1, Exercise 5] we know that M1× . . .×Mk is a topological
manifold of dimension n1 + · · ·+ nk. As in the solution of [Exercise Sheet 1, Exercise 5],
we see that if Ai denotes the smooth structure of Mi for 1 ≤ i ≤ k, then

A :=
{
(U1 × · · · × Uk, φ1 × · · · × φk) | (U1, φ1) ∈ A1, . . . , (Uk, φk) ∈ Ak

}
is an atlas for M1 × . . .×Mk. To see that it is smooth, observe that the transition map
between two charts (U1 × · · · × Uk, φ1 × · · · × φk) and (V1 × · · · × Vk, ψ1 × · · · × ψk) of A
is given by

(ψ1 ◦ φ−1
1 )× . . .× (ψk ◦ φ−1

k ),

which is smooth, since each factor is smooth. Therefore, A is a smooth atlas, and hence
determines a smooth structure on M1 × . . .×Mk by Proposition 1.8 (a).

Exercise 4 (The real projective n-space): Denote by RPn the real projective n-space,
where n ≥ 1. For each i ∈ {0, . . . , n} consider the chart (Ui, φi) for RPn described in
Appendix A, where

Ui :=
{
[x0 : . . . : xn] ∈ RPn | xi ̸= 0

}
⊆ RPn

and

φi : Ui → Rn

[x0 : . . . : xn] 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

Show that the collection
ARPn :=

{
(Ui, φi)

}n

i=0

is a smooth atlas for RPn.

Solution: Let 0 ≤ i < j ≤ n. One can check that

φj ◦ φ−1
i : Rn

xj ̸=0 → Rn
xi+1 ̸=0

(x1, . . . , xn) 7→
1

xj
(x1, . . . , xi, 1, xi+1, . . . , xj−1, xj+1, . . . , xn) ,
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and

φi ◦ φ−1
j : Rn

xi+1 ̸=0 → Rn
xj ̸=0

(x1, . . . , xn) 7→
1

xi+1

(x1, . . . , xi, xi+2, . . . , xj, 1, xj+1, . . . , xn) ,

which demonstrates that the transition functions are smooth. This proves the assertion.

Exercise 5 (to be submitted): Consider the n-sphere Sn ⊆ Rn+1. Denote by N =
(0, . . . , 0, 1) ∈ Rn+1 the north pole and by S = −N = (0, . . . , 0,−1) the south pole of Sn.
Define the stereographic projection from the north pole N as follows:

σ : Sn \ {N} → Rn, σ(x1, . . . , xn+1) =
1

1− xn+1
(x1, . . . , xn).

Let σ̃(x) = −σ(−x) for x ∈ Sn \ {S}; it is called the stereographic projection from the
south pole.

(a) For any x ∈ Sn \ {N}, show that σ(x) = u, where (u, 0) is the point where the line
through N and x intersects the linear subspace where xn+1 = 0. Similarly, show that
σ̃(x) is the point where the line through S and x intersects the same subspace.

(b) Show that σ is bijective, and

σ−1(u1, . . . , un) =
1

|u|2 + 1
(2u1, . . . , 2un, |u|2 − 1).

(c) Verify that the atlas consisting of the two charts
(
Sn \ {N}, σ

)
and

(
Sn \ {S}, σ̃

)
is a

smooth atlas for Sn, and hence defines a smooth structure on Sn. (The coordinates
defined by σ or σ̃ are called stereographic coordinates.)

(d) Show that the smooth structure determined by the above atlas is the same as the one
defined via graph coordinates in Example 1.10 (2).

Solution: Denote by H the linear subspace of Rn+1 where xn+1 = 0, i.e.,

H =
{
(x1, . . . , xn+1) ∈ Rn+1 | xn+1 = 0

}
,

and observe that H can be identified with Rn.

(a) The line ℓ1 ⊆ Rn+1 throughN = (0, . . . , 0, 1) ∈ Rn+1 and x = (x1, . . . , xn+1) ∈ Sn\{N}
is given by the parametric equation

ℓ1 : (x
1, . . . , xn+1) + t(−x1, . . . ,−xn, 1− xn+1), t ∈ R

and intersects the hyperplane H : (xn+1 = 0) for t = − xn+1

1−xn+1 at the point (u, 0) ∈ Rn+1,
where

u =

(
x1 +

xn+1

1− xn+1
x1, . . . , xn +

xn+1

1− xn+1
xn

)
=

(
x1

1− xn+1
, . . . ,

xn

1− xn+1

)
= σ(x) ∈ Rn.

4



Similarly, we see that

σ̃(x) = −σ(−x) = −
(
− x1

1 + xn+1
, . . . ,− xn

1 + xn+1

)
=

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
is the point where the line ℓ2 ⊆ Rn+1 through S and x intersects the hyperplane H.

(b) Pick a point u = (u1, . . . , un) ∈ Rn. The line ℓ ⊆ Rn+1 through (u, 0) ∈ Rn+1 and
N = (0, . . . , 0, 1) ∈ Rn+1 is given by the parametric equation

ℓ : (u1, . . . , un, 0) + t(−u1, . . . ,−un, 1), t ∈ R

and intersects the n-sphere Sn at points which satisfy the equation

|u|2(1− t)2 + t2 = 1,

where |u|2 =
∑n

i=1(u
i)2. It is now easy to check that the above equation has two solutions:

t = 1, which corresponds to the point N ∈ Sn, and t = |u|2−1
|u|2+1

̸= 1, which corresponds to
the point

x =

(
2u1

|u|2 + 1
, . . . ,

2un

|u|2 + 1
,
|u|2 − 1

|u|2 + 1

)
∈ Sn.

Therefore, the map

σ : Sn \ {N} → Rn, (x1, . . . , xn+1) 7→ 1

1− xn+1
(x1, . . . , xn)

is bijective, and its inverse σ−1 : Rn → Sn \ {N} is given by the formula

(u1, . . . , un) 7→ 1

|u|2 + 1
(2u1, . . . , 2un, |u|2 − 1).

(c) It is straightforward to check that(
σ̃ ◦ σ−1

)
(u1, . . . , un) =

1

|u|2
(u1, . . . , un), (u1, . . . , un) ∈ Rn \ {(0, . . . , 0)}

and that its inverse σ ◦ σ̃−1 is also given by the same formula, namely,(
σ ◦ σ̃−1

)
(u1, . . . , un) =

1

|u|2
(u1, . . . , un), (u1, . . . , un) ∈ Rn \ {(0, . . . , 0)}.

Since both σ̃ ◦ σ−1 and σ ◦ σ̃−1 are clearly smooth, the two charts
(
Sn \ {N}, σ

)
and(

Sn \ {S}, σ̃
)
for Sn are smoothly compatible, and since their domains clearly cover Sn,

they comprise a smooth atlas for Sn, which determines a smooth structure on Sn by
Proposition 1.8 (a).

(d) According to Proposition 1.8 (b), to prove the claim, we have to check that the graph
coordinates

(
U±
i ∩ Sn, φ±

i

)
, where

φ±
i : U

±
i ∩ Sn → Bn, (x1, . . . , xn+1) 7→ (x1, . . . , x̂i, . . . , xn+1)
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with inverse(
φ±
i

)−1
: Bn → U±

i ∩ Sn, (u1, . . . , un) 7→
(
u1, . . . ,±

√
1− |u|2, . . . , un

)
,

and the stereographic coordinates
(
Sn\{N}, σ

)
and

(
Sn\{S}, σ̃

)
are smoothly compatible.

For instance, we have

(
φ±
i ◦ σ−1

)
(u1, . . . , un) =

(
2u1

1 + |u|2
, . . . ,

2̂ui

1 + |u|2
, . . . ,

2un

1 + |u|2
,
|u|2 − 1

1 + |u|2

)
for 1 ≤ i ≤ n, and

(
φ±
n+1 ◦ σ−1

)
(u1, . . . , un) =

(
2u1

1 + |u|2
, . . . ,

2ui

1 + |u|2
, . . . ,

2un

1 + |u|2

)
,

which are clearly smooth in their domain of definition. In a similar fashion one can readily
verify that the remaining charts are smoothly compatible; this yields the assertion.

6


