

Differential Geometry II - Smooth Manifolds Winter Term 2025/2026 Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

Exercise Sheet 1 – Solutions

Exercise 1: Show that if a topological space M is locally Euclidean at some point $p \in M$ (i.e., p has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^n), then p has a neighborhood that is homeomorphic to the whole space \mathbb{R}^n or to an open ball in \mathbb{R}^n .

Solution: We first construct a homeomorphism between an open ball $B(a,r) \subset \mathbb{R}^n$ centered at $a \in \mathbb{R}^n$ of radius r > 0 and the whole space \mathbb{R}^n . Specifically, one can easily verify that the map

$$\psi_{a,r} \colon B(a,r) \to \mathbb{R}^n, \ x \mapsto \frac{x-a}{r-\|x-a\|}$$

is a homeomorphism with inverse

$$\psi_{a,r}^{-1} \colon \mathbb{R}^n \to B(a,r), \ y \mapsto a + \frac{ry}{1 + \|y\|}.$$

Now, by assumption we know that there exists an open neighborhood U of p and a homeomorphism φ from U to an open subset $\varphi(U)$ of \mathbb{R}^n . We can find an open ball $B(\varphi(p),r) \subset \varphi(U) \subset \mathbb{R}^n$ for some r > 0. Set $U' := \varphi^{-1}(B(\varphi(p),r)) \subset U \subset M$ and observe that U' is an open neighborhood of p in M and also that the restriction of φ to U' is again a homeomorphism. Therefore, the composite map

$$\psi_{\varphi(p),r} \circ \varphi|_{U'} \colon U' \to \mathbb{R}^n$$

is also a homeomorphism. This completes the proof.

Exercise 2: Examine which of the following spaces (endowed with the subspace topology) is locally Euclidean:

- (a) The closed interval $[0,1] \subseteq \mathbb{R}$.
- (b) The "bent line" $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ xy = 0\} \subseteq \mathbb{R}^2$.

Solution:

- (a) The interval [0,1] is *not* locally Euclidean. Suppose by contradiction that it is locally Euclidean. By *Exercise* 1 there is a neighborhood $U \subseteq [0,1]$ of 0 which is homeomorphic to \mathbb{R}^n for some $n \geq 1$. Denote by $\varphi \colon U \to \mathbb{R}^n$ a homeomorphism and note that U is connected, and thus of the form $U = [0,\varepsilon)$ for some $\varepsilon > 0$. But then $U \setminus \{0\} = (0,\varepsilon)$ is homeomorphic to $\mathbb{R}^n \setminus \{\varphi(0)\}$, and since $(0,\varepsilon)$ is still connected, we infer that n > 1 (\mathbb{R} minus a point has two connected components). Now there are two ways to conclude: First, note that $(0,\varepsilon)$ and $\mathbb{R}^n \setminus \{\varphi(0)\}$ are topological manifolds of dimension 1 and n, respectively, and since the dimension of a topological manifold is a topological invariant, we obtain n = 1, a contradiction. Second, if $x \in (0,\varepsilon)$, then $(0,\varepsilon) \setminus \{x\}$ is homeomorphic to $\mathbb{R}^n \setminus \{\varphi(0), \varphi(x)\}$; as n > 1, the latter is connected, while the former is not, a contradiction.
- (b) The "bent line"

$$L := \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ xy = 0\}$$

is locally Euclidean. Indeed, denote by $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ the counterclockwise rotation around the origin by 45°. As this is a homeomorphism, we obtain that $L \cong \varphi(L)$. But now note that $\varphi(L)$ coincides with the graph of the absolute value function $|\bullet| \colon \mathbb{R} \to \mathbb{R}$. Thus, we obtain $L \cong \varphi(L) \cong \mathbb{R}$.

Exercise 3:

(a) The line with two origins: Consider the set

$$X = \{(x, y) \in \mathbb{R}^2 \mid y \in \{-1, 1\}\} \subseteq \mathbb{R}^2$$

and let M be the quotient of X by the equivalence relation generated by $(x, -1) \sim (x, 1)$ for all $x \neq 0$. Show that M is locally Euclidean and second-countable, but not Hausdorff.

(b) Show that a disjoint union of uncountably many copies of \mathbb{R} is locally Euclidean and Hausdorff, but not second-countable.

Solution:

(a) Denote by $\pi\colon X\to M$ the quotient map $(x,y)\mapsto [(x,y)]$. The two "origins" are the equivalence classes of the points $(0,y)\in X$ for $y=\pm 1$; these classes have just one element each and we denote them by $0_y=[(0,y)]=\{(0,y)\}\in M$. In contrast, the equivalence class of any other point $(x,y)\in X$ with $x\neq 0$ is the two-point set $\widetilde{x}=[(x,y)]=\{(x,1),(x,-1)\}\in M$. Therefore, M is the set of equivalence classes

$$M = X/\sim = \{0_1\} \cup \{0_{-1}\} \cup \{\widetilde{x}\}_{x \neq 0}.$$

The space M is locally Euclidean of dimension 1 because it is the union of two open sets

$$\mathbb{R}_y = \{ [(x,y)] \in M \mid x \in \mathbb{R} \} \quad \text{(for } y = \pm 1),$$

each of which is homeomorphic to \mathbb{R} via the map

$$\varphi_y \colon \mathbb{R} \to \mathbb{R}_y$$

 $x \mapsto [(x, y)].$

To see that the sets \mathbb{R}_y are open in the quotient topology, note that

$$\pi^{-1}(\mathbb{R}_y) = X \setminus \{(0, -y)\},\$$

which is open in X.

Moreover, M is second-countable because it is the union of two second-countable open subsets, namely, the sets $\mathbb{R}_y \cong \mathbb{R}$ (for $y = \pm 1$).

Finally, M is not Hausdorff: let U_{-1} be any open set containing 0_{-1} and let U_1 be any open set containing 0_1 . For $y \in \{-1,1\}$, as $\pi^{-1}(U_y)$ is an open subset of X containing (0,y), it contains a set of the form $V_y = (-\varepsilon_y, \varepsilon_y) \times \{y\}$ for some $\varepsilon_y > 0$. Now let x be a real number such that $0 < x < \min\{\varepsilon_{-1}, \varepsilon_1\}$. Then [(x, -1)] = [(x, 1)] is contained in both U_{-1} and U_1 . Hence, 0_{-1} and 0_1 cannot be separated by disjoint open neighborhoods.

(b) Let I be an uncountable index set. For every $i \in I$ denote by \mathbb{R}_i a copy of the real numbers \mathbb{R} equipped with the Euclidean topology, and let

$$X \coloneqq \bigsqcup_{i \in I} \mathbb{R}_i$$

be their disjoint union. Recall that there is a natural topology on X, defined as follows: For every i, denote by $f_i : \mathbb{R}_i \to X$ the natural set-theoretic inclusion. Then

$$\tau \coloneqq \left\{ U \subseteq X \mid \forall i \in I: \, f_i^{-1}(U) \text{ open in } \mathbb{R}_i \right\}$$

is a topology on X; in fact, it is the finest (i.e., maximal) topology on X such that all the maps f_i are continuous.

To see that (X, τ) is Hausdorff, let $x, y \in X$ be arbitrary. Let $i, j \in I$ be such that $x \in f_i(\mathbb{R}_i)$ and $y \in f_j(\mathbb{R}_j)$. If $i \neq j$, then $f_i(\mathbb{R}_i)$ and $f_j(\mathbb{R}_j)$ are disjoint open neighborhoods of x and y, respectively (check this!). If i = j, then since \mathbb{R}_i is Hausdorff, we can find disjoint open neighborhoods $U, V \subseteq \mathbb{R}_i$ separating (the preimages of) x and y in \mathbb{R}_i . Then $f_i(U)$ and $f_i(V)$ are disjoint open neighborhoods of x and y, respectively, inside X (again, check this!). As $x, y \in X$ were arbitrary, we conclude that X is Hausdorff.

Next, to check that X is locally Euclidean, let $x \in X$ be arbitrary. Let $i \in I$ be such that $x \in f_i(\mathbb{R}_i)$. Then $f_i(\mathbb{R}_i) \cong \mathbb{R}$ is a Euclidean open neighborhood of x inside X.

Finally, suppose by contradiction that X is second-countable, i.e. there exists a countable basis \mathfrak{B} for its topology τ . Note that, for every $i \in I$, the set $f_i(\mathbb{R}_i)$ is open in X, and thus there exists $\emptyset \neq U_i \in \mathfrak{B}$ such that $U_i \subseteq f_i(\mathbb{R}_i)$. But then we must have $U_i \neq U_j$ for all $i \neq j$, and thus the map

$$I \to \mathfrak{B}, i \mapsto U_i$$

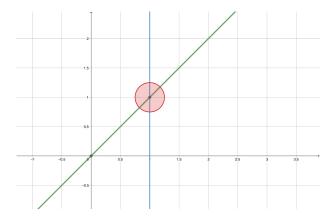
is an injection. However, since I is uncountable, this contradicts our hypothesis that \mathfrak{B} is countable.

Exercise 4 (to be submitted): Consider the subset

$$V = \{(x, y) \in \mathbb{R}^2 \mid (x - 1)(x - y) = 0\} \subseteq \mathbb{R}^2$$

endowed with the subspace topology. Show that V is not a topological manifold.

Solution: The subset $V \subseteq \mathbb{R}^2$ and a disc with small radius and centered at the point $(1,1) \in \mathbb{R}^2$ (which is the point of intersection of the lines y=x and x=1) have been plotted below.



Since V is a subspace of \mathbb{R}^2 , it is Hausdorff and second-countable. By considering any point $p \in V \setminus \{(1,1)\}$, we conclude that if V were a topological manifold, then it would necessarily have dimension 1. Assume now by contradiction that V is a topological 1-manifold. Then there exists an open neighborhood W of (1,1) which is homeomorphic to an open subset G of \mathbb{R} ; denote by φ this homeomorphism. For sufficiently small $\varepsilon > 0$, the set $U := B((1,1),\varepsilon) \cap W$ (the red disc above) is an open neighborhood of (1,1) in W, which is connected. Hence, its homeomorphic image $I := \varphi(U)$ in $G \subseteq \mathbb{R}$ is connected as well, and thus $I \subseteq \mathbb{R}$ is an open interval. Observe now that $U \setminus \{(1,1)\}$ has four connected components, whereas $I \setminus \{\varphi(1,1)\}$ has only two connected components, a contradiction. In conclusion, V is not a topological manifold.

Exercise 5 (*Product manifolds*): Let M_1, \ldots, M_k be topological manifolds of dimensions n_1, \ldots, n_k , respectively, where $k \geq 2$. Show that the product space $M_1 \times \ldots \times M_k$ is a topological manifold of dimension $n_1 + \ldots + n_k$.

Solution: Any finite product of Hausdorff spaces is also Hausdorff: two distinct points of the product differ at some coordinate, where we can separate them by two disjoint open neighborhoods. Furthermore, if for each $1 \le i \le k$ we denote by \mathcal{B}_i a countable basis for the topology of M_i , then

$$\mathcal{B} := \{B_1 \times \dots \times B_k \mid \forall 1 \le i \le k : B_i \in \mathcal{B}_i\}$$

is a countable basis for the topology of the product $M_1 \times \ldots \times M_k$. Finally, given any point $P = (p_1, \ldots, p_k) \in M_1 \times \ldots \times M_k$, by Exercise 1 we know that for every $1 \le i \le k$ there exists an open neighborhood $U_i \subseteq M_i$ of p_i such that $U_i \cong \mathbb{R}^{n_i}$. Hence, $U := U_1 \times \ldots \times U_k$ is an open neighborhood of P such that $U \cong \mathbb{R}^{n_1 + \ldots + n_k}$. In conclusion, $M_1 \times \ldots \times M_k$ is a topological manifold of dimension $n_1 + \ldots + n_k$.