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Differential Geometry II - Smooth Manifolds
Winter Term 2025/2026

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 1 — Solutions

Exercise 1: Show that if a topological space M is locally Euclidean at some point p € M
(i.e., p has a neighborhood that is homeomorphic to an open subset of R™), then p has a
neighborhood that is homeomorphic to the whole space R™ or to an open ball in R"™.

Solution: We first construct a homeomorphism between an open ball B(a,r) C R”
centered at a € R™ of radius r > 0 and the whole space R™. Specifically, one can easily
verify that the map
T —a
Yo, Bla,r) > R", 2 — —————
r— |z — al

is a homeomorphism with inverse

ry

Y.L R" = Bla,r), yr—a+ ——0.
’ 1L+ [lyll

Now, by assumption we know that there exists an open neighborhood U of p and a
homeomorphism ¢ from U to an open subset ¢(U) of R". We can find an open ball
B(¢(p),r) C ¢(U) C R™ for some r > 0. Set U’ := ¢ '(B(¢(p),r)) C U C M and
observe that U’ is an open neighborhood of p in M and also that the restriction of ¢ to
U’ is again a homeomorphism. Therefore, the composite map

Vo) © Plor: U — R”
is also a homeomorphism. This completes the proof.

Exercise 2: Examine which of the following spaces (endowed with the subspace topology)
is locally Euclidean:

(a) The closed interval [0,1] C R.

(b) The “bent line” {(z,y) € R? |z >0, y >0, zy =0} C R?



Solution:

(a) The interval [0, 1] is not locally Euclidean. Suppose by contradiction that it is locally
Euclidean. By Ezercise 1 there is a neighborhood U C [0, 1] of 0 which is homeomorphic
to R for some n > 1. Denote by ¢: U — R"™ a homeomorphism and note that U is
connected, and thus of the form U = [0,¢) for some ¢ > 0. But then U \ {0} = (0,¢)
is homeomorphic to R™ \ {¢(0)}, and since (0,¢) is still connected, we infer that n > 1
(R minus a point has two connected components). Now there are two ways to conclude:
First, note that (0,e) and R™ \ {¢(0)} are topological manifolds of dimension 1 and n,
respectively, and since the dimension of a topological manifold is a topological invariant,
we obtain n = 1, a contradiction. Second, if z € (0,¢), then (0,¢)\{z} is homeomorphic to
R™"\{¢(0), ¢(z)}; asn > 1, the latter is connected, while the former is not, a contradiction.

(b) The “bent line”
L={(z,y) eR*|2>0,y>0, zy=0}

is locally Euclidean. Indeed, denote by ¢: R? — R? the counterclockwise rotation around
the origin by 45°. As this is a homeomorphism, we obtain that L = ¢(L). But now note
that ¢(L) coincides with the graph of the absolute value function | e |: R — R. Thus, we
obtain L = ¢(L) = R.

Exercise 3:
(a) The line with two origins: Consider the set
X ={(z,y) eR* |y {-1,1}} CR?

and let M be the quotient of X by the equivalence relation generated by (x,—1) ~
(z,1) for all x # 0. Show that M is locally Euclidean and second-countable, but not
Hausdorft.

(b) Show that a disjoint union of uncountably many copies of R is locally Euclidean and
Hausdorff, but not second-countable.
Solution:

(a) Denote by m: X — M the quotient map (x,y) — [(x,y)]. The two “origins” are
the equivalence classes of the points (0,y) € X for y = £1; these classes have just
one element each and we denote them by 0, = [(0,y)] = {(0,y)} € M. In contrast,
the equivalence class of any other point (z,y) € X with x # 0 is the two-point set
T =|(z,y)] = {(z,1), (z,—1)} € M. Therefore, M is the set of equivalence classes

M =X/ ~= {0} U{0_1} U{Z},20.

The space M is locally Euclidean of dimension 1 because it is the union of two open

sets
R, = {[(z,y)] € M |z € R} (fory = +1),

each of which is homeomorphic to R via the map
wy: R—= R,
z = [(z,y)].



To see that the sets R, are open in the quotient topology, note that

W_l(Ry) =X \ {(Ov _y)}7

which is open in X.

Moreover, M is second-countable because it is the union of two second-countable open
subsets, namely, the sets R, = R (for y = £1).

Finally, M is not Hausdorff: let U_; be any open set containing 0_; and let U; be any
open set containing 0;. For y € {—1,1}, as 7 !(U,) is an open subset of X containing
(0,y), it contains a set of the form V,, = (—¢,,¢,) x {y} for some £, > 0. Now let = be
a real number such that 0 < x < min{e_y,&1}. Then [(z,—1)] = [(x,1)] is contained in
both U_; and U;. Hence, 0_; and 0; cannot be separated by disjoint open neighborhoods.

(b) Let I be an uncountable index set. For every i € I denote by R; a copy of the real
numbers R equipped with the Euclidean topology, and let

i€l

be their disjoint union. Recall that there is a natural topology on X, defined as follows:
For every 7, denote by f;: R; — X the natural set-theoretic inclusion. Then

T={UCX|Viel: f7'(U)open in R;}

is a topology on X; in fact, it is the finest (i.e., maximal) topology on X such that all the
maps f; are continuous.

To see that (X, 7) is Hausdorff, let x,y € X be arbitrary. Let i,j € I be such that
z € f;(R;) and y € f;(R;). If i # j, then f;(R;) and f;(R;) are disjoint open neighborhoods
of x and y, respectively (check this!). If i = j, then since R; is Hausdorff, we can find
disjoint open neighborhoods U, V' C R; separating (the preimages of) = and y in R;. Then
fi(U) and f;(V) are disjoint open neighborhoods of x and y, respectively, inside X (again,
check this!). As z,y € X were arbitrary, we conclude that X is Hausdorff.

Next, to check that X is locally Euclidean, let x € X be arbitrary. Let ¢ € I be such
that z € f;(R;). Then f;(R;) = R is a Euclidean open neighborhood of = inside X.

Finally, suppose by contradiction that X is second-countable, i.e. there exists a count-
able basis B for its topology 7. Note that, for every i € I, the set f;(IR;) is open in X,
and thus there exists () # U; € B such that U; C f;(R;). But then we must have U; # U;
for all ¢ # j, and thus the map

I =% i— U

is an injection. However, since I is uncountable, this contradicts our hypothesis that 8
is countable.

Exercise 4 (to be submitted): Consider the subset
V={(ry eR*|(z-1)(z—y) =0} CR®

endowed with the subspace topology. Show that V' is not a topological manifold.



Solution: The subset V' C R? and a disc with small radius and centered at the point
(1,1) € R? (which is the point of intersection of the lines y = z and z = 1) have been
plotted below.

Since V is a subspace of R?, it is Hausdorff and second-countable. By considering
any point p € V' \ {(1,1)}, we conclude that if V' were a topological manifold, then it
would necessarily have dimension 1. Assume now by contradiction that V' is a topological
I-manifold. Then there exists an open neighborhood W of (1, 1) which is homeomorphic
to an open subset G of R; denote by ¢ this homeomorphism. For sufficiently small € > 0,
the set U == B((1,1),) NW (the red disc above) is an open neighborhood of (1,1) in W,
which is connected. Hence, its homeomorphic image I := ¢(U) in G C R is connected as
well, and thus / C R is an open interval. Observe now that U\ {(1, 1)} has four connected

components, whereas I \ {¢(1,1)} has only two connected components, a contradiction.
In conclusion, V' is not a topological manifold.

Exercise 5 (Product manifolds): Let My, ..., M} be topological manifolds of dimensions
ni, ..., Nk, respectively, where k > 2. Show that the product space M; x ... x M is a
topological manifold of dimension ny + ... 4+ n.

Solution: Any finite product of Hausdorff spaces is also Hausdorff: two distinct points
of the product differ at some coordinate, where we can separate them by two disjoint open
neighborhoods. Furthermore, if for each 1 <14 < k we denote by B; a countable basis for
the topology of M;, then

B:={B/ x--xBy |V1<i<k: B €B)}

is a countable basis for the topology of the product M; x...x M;. Finally, given any point
P=(p1,...,px) € My X ... X My, by Ezercise 1 we know that for every 1 < i < k there
exists an open neighborhood U; C M; of p; such that U; = R™. Hence, U := U; X ... x Uy
is an open neighborhood of P such that U = R™ ™t In conclusion, M; X ... x M, is
a topological manifold of dimension ny + ... 4 ng.



